EXTRA CREDIT

Find as many mistakes as you can and correct them!

Cite your source for the lyrics and astronomical data.
Show any math/conversions explicitly.

Due: Last day of classes, May 1
Room Change

Monday April 20, 2009
BioChem room 111
X-ray binaries
– nuclear physics at the extremes

Outline

1. Observations
2. X-ray Burst Model
3. Nuclear Physics – the rp process
4. Open Questions
Wilhelm Konrad Roentgen, First Nobel Price 1901 for discovery of X-rays 1895

First X-ray image from 1890
(Goodspeed & Jennings, Philadelphia)

Ms Roentgen’s hand, 1895
Cosmic X-rays: discovered end of 1960’s:

0.5-5 keV (T=E/k=6-60 \times 10^6 K)

Again Nobel Price in Physics 2002 for Riccardo Giacconi
X-rays in the sky

Some X-ray Landmarks

- NGC 4151 massive black hole
- Cyg X-1 stellar black hole
- Cas A supernova remnant
- Sun

Crab nebula and pulsar
- Cen X-3
- Large Magellanic Cloud

- GX 17+2
- GX 1+4
- GX 349+2 neutron star
- GX 5-1

D.A. Smith, M. Muno, A.M. Levine, R. Remillard, H. Bradt 2002
(RXTE All Sky Monitor)
First **X-ray pulsar**: Cen X-3 (Giacconi et al. 1971) with UHURU

First X-ray burst: 3U 1820-30 (Grindlay et al. 1976) with ANS

Today: ~50 burst sources out of 160 LMXB’s

Total ~230 X-ray binaries known
Burst characteristics

Typical X-ray bursts:

- 10^{36}-10^{38} erg/s
- duration 10 s – 100s
- recurrence: hours-days
- regular or irregular

Frequent and very bright phenomenon!

(stars 10^{33}-10^{35} erg/s)
Neutron stars:
1.4 M_\odot, 10 km radius
(average density: $\sim 10^{14}$ g/cm3)

Typical systems:
- accretion rate $10^{-8}/10^{-10} \ M_\odot$/yr (0.5-50 kg/s/cm2)
- orbital periods 0.01-100 days
- orbital separations 0.001-1 AU’s
- surface density $\sim 10^6$ g/cm3
Observation of thermonuclear energy

Unstable, explosive burning in bursts (release over short time)

- Burst energy
- Thermonuclear

- Persistent flux
- Gravitational energy
Energy sources

Energy generation: thermonuclear energy

\[4\text{H} \rightarrow ^4\text{He} \quad 6.7 \text{ MeV/u} \quad \text{("CNO cycles")} \]

\[3^4\text{He} \rightarrow ^{12}\text{C} \quad 0.6 \text{ MeV/u} \quad \text{("triple alpha")} \]

\[5\; ^4\text{He} + 84\; \text{H} \rightarrow ^{104}\text{Pd} \quad 6.9 \text{ MeV/u} \quad \text{("rp process")} \]

Energy generation: gravitational energy

\[E = \frac{G \; M \; m_u}{R} = 200 \text{ MeV/u} \]

Ratio gravitation/thermonuclear \(\sim 30 - 40 \) (called \(\alpha \))
Initial Conditions

- Accreting material loses energy via X-ray emission
 - Gravitational energy
- Surface temperature related to accretion rate
 - Kinetic energy
Burst ignition at “low” accretion rates

Burst trigger rate is “triple alpha reaction” $^3\,^4\text{He} \rightarrow ^{12}\text{C}$

Ignition: $\left| \frac{d\varepsilon_{\text{nuc}}}{dT} \right| > \left| \frac{d\varepsilon_{\text{cool}}}{dT} \right|$

ε_{nuc} Nuclear energy generation rate

$\varepsilon_{\text{cool}} \sim T^4$ Cooling rate

Ignition < 0.4 GK: unstable runaway

- heat added increases T
- higher T increases ε_{nuc}
- larger ε_{nuc} increase T more
Stable burning at “high” accretion rates

Stable Burning: \[\left| \frac{d\varepsilon_{\text{nuc}}}{dT} \right| < \left| \frac{d\varepsilon_{\text{cool}}}{dT} \right| \]

\(\varepsilon_{\text{nuc}} \) Nuclear energy generation rate
\(\varepsilon_{\text{cool}} \sim T^4 \) Cooling rate

Stable Burning > 0.5 GK:
- heat added efficiently cooled
- \(T \) doesn’t change dramatically

\[\text{NO X-Ray Bursting!!} \]
Visualizing reaction networks

Proton number

\[
\begin{array}{c}
\text{27Si} \\
\text{13} \\
\end{array}
\]

\[
\begin{array}{c}
\text{14} \\
\text{Proton number} \\
\end{array}
\]

\[
\begin{array}{c}
\text{13} \\
\text{neutron number} \\
\end{array}
\]

- \((p, \gamma)\)
- \((\alpha, \gamma)\)
- \((\alpha, p)\)
- \((, \beta^+)\)
“Cold” CN(O)-Cycle \(T_9 < 0.08 \)

Energy production rate:
\[\varepsilon \propto <\sigma v>_{14N(p,\gamma)} \]

Hot CN(O)-Cycle \(T_9 \sim 0.08-0.1 \)

“beta limited CNO cycle”
\[\varepsilon \propto 1/(\lambda_{14O(\beta^+)}^{-1} + \lambda_{15O(\beta^+)}^{-1}) = \text{const} \]

Note: condition for hot CNO cycle depend also on density and \(Y_p \):

- on \(^{13}\text{N} \):
 \[\lambda_{p,\gamma} > \lambda_\beta \]
 \[\Leftrightarrow Y_p \rho N_A < \sigma v > > \lambda_\beta \]

- \(^{14}\text{O} \):
 \[T_{1/2} = 71 \text{s} \]
- \(^{15}\text{O} \):
 \[T_{1/2} = 122 \text{s} \]
Very Hot CN(O)-Cycle \(T_9 \sim 0.3 \)

still “beta limited”

Breakout

processing beyond CNO cycle after breakout via:

\[T_9 > 0.36 \quad ^{15}O(\alpha,\gamma)^{19}Ne \]

\[T_9 > 0.62 \quad ^{18}Ne(\alpha,p)^{21}Na \]

How do we calc?

\[^{18}Ne \text{ T}_{1/2} = 1.7s \]

\[^{15}O \text{ T}_{1/2} = 122s \]
Current 15O(a,γ) Rate with X10 variation

New lower limit for density from B. Davids et al. (PRC67 (2003) 012801)
No Breakout

$^{15}\text{O}(\alpha,\gamma)^{19}\text{Ne}$ Breakout

$^{18}\text{Ne}(\alpha,p)^{21}\text{Na}$ Breakout

Gorres, Weischer and Thielemann
PRC 51 (1995) 392
Doubly Magic Nuclei influence nucleosynthesis

40Ca – end of αp-process

56Ni – peak luminosity

100Sn – end of rp-process

(Schatz et al. PRL 86(2001)3471)

Collaborators:

L. Bildsten (UCSB)
A. Cumming (UCSC)
M. Ouellette (MSU)
T. Rauscher (Basel)
F.-K. Thielemann (Basel)
M. Wiescher (Notre Dame)
- αp & rp competition
 - Important branching points
- past ^{40}Ca, α-induced reactions inhibited
 - rp-process continues
- Most energy generated near ^{56}Ni
 - Can develop cycles
 - Heavy α-nuclei are waiting points
- ^{100}Sn region natural endpoint
Competition between αp- & rp- processes

- ^{22}Mg is branching point
- (p,g) and (a,p) compete
- rp-process eats p's
- αp-process eats α's

Branch points also appear at ^{26}Si, ^{30}S & ^{34}Ar
^{56}Ni is doubly magic

^{59}Cu is branch point

Either rp-continues

or (p,α) back to ^{56}Ni

This is the NiCu cycle

Cycle pattern repeats for ^{60}Zn

This is the ZnGa cycle
Slow reactions \rightarrow extend energy generation \rightarrow abundance accumulation

(steady flow approximation $\lambda Y = \text{const}$ or $Y \sim 1/\lambda$)

Critical "waiting points" can be easily identified in abundance movie
The Sn-Sb-Te cycle

Known ground state
α emitter

(Schatz et al. PRL 86(2001)3471)

Collaborators:
L. Bildsten (UCSB)
A. Cumming (UCSC)
M. Ouellette (MSU)
T. Rauscher (Basel)
F.-K. Thielemann (Basel)
M. Wiescher (Notre Dame)
Experiments in the rp-process

Henrique Bertulani
Data needs for rp process

Key nuclear physics parameters:
- Proton separation energies (masses)
- β-decay half-lives
- Proton capture rates

\[N=Z \text{ line} \]

β^+ and (p, γ) half-life of ^{68}Se

Exp. limit

- Hilf et al. mass
- Jaenecke et al. mass
- FRDM (1992) mass
- Upper limit from exp.

Schatz et al.
Experimental data?

- Mass known < 10 keV
- Mass known > 10 keV
- Only half-life known
- seen

Most half-lives known
Masses still need work
(need < 10 keV accuracy)
mass models not the issue
(extrapolation, coulomb shift)
Reaction rates?
Influence of masses on X-ray burst models

- **Brown**
- **Audi unbound**
- **Audi bound**
Problem: Reaction rates

Are important when:

- they draw on equilibrium
- they are slow – low T (ignition, cooling, upper layers)
- several reactions compete

Theoretical reaction rate predictions:

Hauser-Feshbach: not applicable near drip line

Shell model: available up to A~63 but large uncertainties (often x1000 - x10000)

(Herndl et al. 1995, Fisker et al. 2001)

→ Need radioactive beams
Comparison to Observations

Average XRB Light Curve

Flux (10^{-9} erg cm$^{-2}$ s$^{-1}$) vs Time (s)
Model Comparisons

Summary

- rp-process is important to understand
 - X-ray bursts
 - crusts of accreting neutron stars/ transients
 - neutron stars!

- need radioactive beam experiments
 - much within reach at existing facilities
 - with RIA and FAIR precision tests possible

- lots of open question – much work to do
 - modelling
 - nuclear physics (predict instabilities?)
 - observations