Nuclear properties that are relevant for reaction rates:

Nucleons in the nucleus can only have discrete energies. Therefore, the nucleus as
a whole can be excited into discrete energy levels (excited states)

Excitation energy (MeV)

Spin

Excitation
energX | Parity (+ or -)
5.03 327 3rd excited state
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State



Each state is characterized by:

e energy (mass)

* SpIN

* parity

« lifetimes against y,p,n, and o emission

The lifetime is usually given as a width as it corresponds to a width in the
excitation energy of the state according to Heisenberg:

AE-At=1
therefore, a lifetime t corresponds to a width I

r-2
2'

the lifetime against the individual “channels” for y,p,n, and o emission are
usually given as partial widths

[, T, Ty and T, wih  T=>T,
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Basic reaction mechanisms involving strong or electromagnetic interaction:

Example: neutron capture A+ n->B +vy

|. Direct reactions (for example, direct capture)

&[T

"A+n LNE_ |

B

direct transition into bound states

ll. Resonant reactions (for example, resonant capture)

Step 1. Coumpound nucleus formation Step 2: Coumpound nucleus decay
(in an unbound state)

=P

> A+n

% T




or a resonant A(n,o)B reaction:

Step 1: Compound nucleus formation Step 2: Compound nucleus decay
(in an unbound state)

e b @

> A+n

C B+a

C B

For resonant reactions, E_ has to “match” an excited state (but all excited states
have a width and there is always some cross section through tails)

But enhanced cross section for E, ~E,- S,

more later ...



Direct reactions - for example direct capture:
a+t+A->B+y

Direct transition from initial state |a+A> to final state <f| (some state in B)

2 2
oo A% -|(f|H|a+ A)" - R (E)
/ ‘ \

geometrilcal factor Interaction matrix Penetr_abil_ity: probability
(dequgllg wave length element for projectile to reach
of projectile - “size” of the target nucleus for
projectile) interaction.

h h Depends on projectile

A=—= Angular momentum |
P v2mE and Energy E

aocé-Kf\H\aJrA}‘z-P,(E)

111.25



Penetrability: 2 effects that can strongly reduce penetrability:

1. Coulomb barrier

>

for a projectile with Z, and
a nucleus with Z;

Potential <

2
428 | o V. [MeV]= 144ZZ ~12 1L

TR RIM] (A7 + A7)

Example: 12C(p,y) V.= 3 MeV

Typical particle energies in astrophysics are kT=1-100 keV !

Therefore, all charged particle reaction rates in nuclear astrophysics
occur way below the Coulomb barrier — fusion is only possible
through tunneling



2. Angular momentum barrier

Incident particles can have orbital angular momentum L
Classical: Momentum p

._p>$d Impact parameter d
L = pd

' >

In guantum mechanics the angular momentum of an incident particle can have
discrete values:

L=+ 7 With |1=0 s-wave And parity of the
=1 p-wave wave function: (-1)'
=2 d-wave

For radial motion (with respect to the center of the nucleus), angular momentum
conservation (central potential !) leads to an energy barrier for non zero angular
momentum.

Classically, one needs the radial kinetic energy to overcome the central potential,
but if d != 0 then there is an increasing amount of “non radial kinetic energy”,
which one needs to supply as well (at z=0 for example, K_r=0, but of course K !=0) 4



Energy E of a particle with angular momentum L (still classical)
L2
2mr?*

E—

Similar here in quantum mechanics:

(I +1)h2 u : reduced mass of projectile-target system

V, =
| 2 Peaks again at nuclear radius (like Coulomb barrier)

2.ur

Or in MeV using the nuclear radius and mass numbers of projectile A, and
target A,

1(1+2)

AA, | aus, pus
[Aa Azj(Al A

V, [MeV] =12



Direct reactions — the simplest case: s-wave neutron capture

No Coulomb or angular momentum barriers: V=0
V=0

s-wave capture therefore always dominates at low energies

But, change in potential still causes reflection — even without a barrier
Recall basic quantum mechanics:

; > ; >
Incoming wave transmitted wave

<
Reflected wave

Potential

Transmission proportional to ./ =

10



Therefore, for direct s-wave neutron capture:

Penetrability P(E) o< \/E

1 1
Cross section (use Eq. 111.19): O oC T Or O oC—

V

Example: ’Li(n,y)
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Why s-wave dominated ? Level scheme:

2.063  3/2-+1/2*
Li+n Ely
0981 1+

Ely

8L

Angular momentum and parity conservation:

Entrance channel ’Li+ n: 3/2-+ 1/2++ 1-0)'= 1-,2- (I=0 for s-wave)

Exit channel 8Li+y: 2%+ ? (photon spin/parity)

Recall: Photon angular momentum/parity depend on multiploarity:

For angular momentum L (=multipolarity) electric transition EL parity (-1)-
magnetic transition ML parity (-1)4+1

12



Also recall:

E.M. Transition strength increases:
o for lower L

» for E over M

« for higher energy oc Ey2L+1

Entrance channel 7Li+ n: 3/2-+ 1/2++ 1D =1-, 2= ( I=0 for s-wave )

Exit channel BLi+y: 2¢ @ =1-,2-, 3

A
E1l photon _
lowest EL that match possible
allows to fulfill

conservation laws

Same for 1* state

—P “At low energies “Li(n,y) is dominated by (direct) s-wave E1 capture”.

13



Stellar reaction rate for s-wave neutron capture:

1
Because o oc— —» oV =COnst=<oVv>

Vv

14



Direct reactions — neutron captures with higher orbital angular momentum

For neutron capture, the only barrier is the angular momentum barrier

The penetrability scales with

P| (E) o E1/2—|—|

and therefore the cross section (Eq 111.19)

1-1/2
oo E'Y

for I>0 cross section decreases with decreasing energy (as there is a barrier present)

Therefore, s-wave capture in general dominates at low energies, in particular at
thermal energies. Higher |-capture usually plays only a role at higher energies.
What “higher” energies means depends on case to case - sometimes s-wave is
strongly suppressed because of angular momentum selection rules (as it would
then require higher gamma-ray multipolarities)
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Example: p-wave capture in 14C(n,y)1°C
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(from Wiescher et al. ApJ 363 (1990) 340)



Why p-wave ?

B 5/2+
1/2*
Exit channel (1°C + vy)
Y total to 1/2* total to 5/2*
E1l 1~  1/2-3/2 3/2-5/2-7/2 strongest !

M1 v 1/2+ 3/2*
E2 2t 3/2*5/2*

3/2*5/2+7/2*
1/2+ 3/2+ 5/2+ 7/2* 9/2*

Entrance channel:

ITC 14C N
s-wave ot 0o+ 1/2¢

p-wave 1- 0 1/2¢

1/2- 3/2-

strongest possible Exit multipole
into 1/2*

into 5/2*
E2
El

despite of higher barrier, for relevant energies (1-100 keV) p-wave E1 dominates.

At low energies, for example thermal neutrons, s-wave still dominates. But here
for example, the thermal cross section is exceptionally low (<1ub limit known)

17



Charged particle induced direct reactions

Cross section and S-factor definition

(for example proton capture - such as 2C(p,y) in CN cycle)
incoming projectile Z, A, (for example proton or a particle)

target nucleus Z,A,

again

oo = R(E)|(f [H]a+ A)f

but now incoming particle has to overcome Coulomb barrier. Therefore

B 7.7.¢e°
P(E)oce win p=. |t b2t
|() wi n oE h

(from basic quantum mechanical barrier transmission coefficient)
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Penetrability factor P (E) example

Charged particle (proton) Neutron
1
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(from lliadis “Nuclear Physics of Stars”)
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The concept of the astrophysical S-factor (for n-capture)

recall: 1

GOCE-H(E)-‘<](‘H‘8.—I—A>‘2 11125

H_}L ~ )

“trivial” strong “real” nuclear physics
energy weak energy dependence
dependence (for direct reactions !)

S-factor concept:; write cross section as

strong “trivial” energy dependence X weakly energy dependent S-factor

The S-factor can be
* easier graphed
» easier fitted and tabulated
* easier extrapolated
» and contains all the essential nuclear physics

Note: There is no “universally defined S-factor - the S-factor definition depends on
the type of reaction and (for neutrons at least) on I|-value

20



Here the main energy dependence of the cross section (for direct reactions !)
IS given by

b
oo 1 o VE b=231.28-7,Z,A"* VkeV

E Al AN _p
A+A my

therefore the S-factor for charged particle reactions is defined via

1 . typical unit for S(E): keV barn
o =—e"ES(E)

So far this all assumed s-wave capture. However, the additional angular momentum

barrier leads only to a roughly constant addition to this S-factor that strongly decreases
with |

Therefore, the S-factor for charged particle reactions is defined independently

of the orbital angular momentum 21



Example:
12C(p,y) cross section

need cross section

107
0.460 Mev res.
1074
107°
107

1077 o

_g|- /
107® &

"{ C2(p, y)N1?

Cross section, barns
-,

i
107° F
hd

lo—lo -

here !

lo-ll -

lo-lz -l

1 1 1 1 1 L I 1 1 L 1 ! 1 J
o] 0.10 0.20 0.30 0.40 0.50 0.60 0.70

Lab proton energy, Mev

Fig. 4-4 The measured cross section for the reaction C!2(p,y)N*2 as a function of
laboratory proton energy. A four-parameter theoretical curve has been fitted
to the experimental points. An extrapolation to E, = 0.025 Mev, which is an
interesting energy for this reaction in astrophysics, appears treacherous.
(Courtesy of W. A. Fowler and J. L. Vogl.)
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S-Factor:

Need rate
about here

10 Te

o - A BA50
C(p,y) °N 0 HA50
® LAS7
X VO63
¢ RO74
+ RO74 (from do/dn)

% — extrapol.

S-factor (MeV-b)

E (MeV)

From the NACRE compilation of charged particle induced reaction rates on
stable nuclei from H to Si (Angulo et al. Nucl. Phys. A 656 (1999) 3
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90.3.2. Relevant cross section - Gamov Window

for charged particle reactions

E [ b E
< oV >= i(kT)-?”Zja(E)Ee KT dE = i(|<T)-~°"2j5(E)e [@ kT]dE
et et \ )
Y

Gamov Peak

Note: relevant
Cross section

in tail of M.B.
distribution,
much larger than
KT (very different
\ from n-capture !)

\\-—A=4—1o kev
\

p e — — —— . . —— ——

'If‘\
|
|
|
|
|
|

z y 4 e ———
kT=1-3kev E=15-30 kev ~E
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The Gamov peak can be approximated with a Gaussian

b E 3E, E E, °
E kT KT E/2
C VE C C

centered at same energy E, with width AE such that d2/dE?|c, is the same

Then, the Gamov window or the range of relevant cross section can be
easily calculated using:

bkT )" /s
E, = (Tj =0.12204(2722A) T2 MeV

AE =L [EKT =0.23682 (2222 A *T5"* MeV

V3

with A “reduced mass number” and T, the temperature in GK
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Example:

0.7r
Clz(p,‘)’)N 13
E, = 37.9kev
N A = 22.8kev
& 051
R
+ T =30X%X10%°K
Q!@ 0.4}
e’
o 0.3} Note:
,,5 ' 27.9 kev—m kT=2.5 keV!
°
— 0.2
0.1}
| ] L ! | |
0 10 20 30 40 50 60 70 80 90

E, kev

Fig. 4-7 The Gamow peak for the reaction C2(p,y)N13at T = 30 X 10%°K.
The curve is actually somewhat asymmetric about E,, but it is nonetheless
adequately approximated by a gaussian.
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9.3.3. Reaction rate from S-factor

Often (for example with theoretical reaction rates) one approximates the rate
calculation by assuming the S-factor is constant over the Gamov Window

S(E)=S(E,)

then one finds the useful equation:

1/3

1/3
zfngJ

—4.2487(
T9

leZ
AT,

N, <ov>=7.83-10° S(E,)[MeV barn] e

Equation 111.53

(A reduced mass number!)

27



better (and this is often done for experimental data) one expands S(E) around E=0

as powers of E to second order:

S(E) = S(0) + ES'(O)+%ES"(O)

If one integrates this over the Gamov window, one finds that one can use
Equation I11.46 when replacing S(E,) with the effective S-factor S

S :S(O){ljL > +SI(O)(EO+§kT] 18”(0)( 9EkTﬂ
12z S(0) 36 2 S(0) 36

with 7= % and E, as location of the Gamov Window (see Pg. 51)
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