Reaction rates in the Laboratory

<u>Example I:</u> ¹⁴N(p,γ)¹⁵O

- slowest reaction in the CNO cycle
 - \rightarrow Controls duration of hydrogen burning
 - \rightarrow Determines main sequence turnoff glob. cluster ages
- stable target \rightarrow can be measured directly:

- but cross sections are extremely low:
 - \rightarrow Measure as low an energy as possible
 - then extrapolate to Gamow window

Calculating experimental event rates and yields

assume thin target (unattenuated beam intensity throughout target)

Reaction rate (per target nucleus):

Total reaction rate (reactions per second)

$$\lambda = \sigma j$$
$$R = \lambda A dn_T = \sigma I dn_T$$

with n_T : number density of target nuclei I = jA : beam number current (number of particles per second hitting the target) note: dn_T is number of target nuclei per cm². Often the target thickness is specified in these terms. Events detected in experiment per second R_{det}

$$R_{\rm det} = R\varepsilon$$

$\boldsymbol{\epsilon}$ is the detection efficiency and can accounts for:

- detector efficiency
 - (fraction of particles hitting a detector that produce a signal that is registered)
- solid angle limitations
- absorption losses in materials
- energy losses that cause particles energies to slide below a detection threshold

•

¹⁴N(p, γ) level scheme

LUNA

Laboratory Underground for Nuclear Astrophysics

(Transparencies: F. Strieder http://www.jinaweb.org/events/tucson/Talk_Strieder.pdf)

1:1 Mio cosmic ray suppression

HP Ge-Detector earth surface detector without any shielding

 $3 \text{ MeV} \le E_{\gamma} \le 8 \text{ MeV}$ $\Rightarrow 0.5 \text{ counts/s}$

HP Ge-Detector LNGS underground detector with Pb shielding

 $3 \text{ MeV} \le E_{\gamma} \le 8 \text{ MeV}$ $\Rightarrow 0.0002 \text{ counts/s}$

400 kV LUNA accelerator

Inline-Crockcroft-Walton power supply inside tank mixture $N_2/CO_2 @ 20$ bar $U_{max} = 50 - 400$ kV HV-ripple = 20 Vpp $\Delta E_{max} = 0.07$ keV (meas.) ion beams: protons, alphas $I_{max} = 700 \mu A$

$Experiment-additional\ shielding$

INFI

Results:

New S(0)=1.7 +- 0.2 keVb (NACRE: 3.2 +- 0.8)

New Resonance ?

Infinite thick target measurement TUNL 2001

No confirming evidence in UNC data 2002

Effect that speculative resonance would have had

Example II: ²¹Na(p, y)²²Mg

problem: ²¹Na is unstable (half-life 22.5 s)

solution: radioactive beam experiment in inverse kinematics: 21Na + p \rightarrow 22Mg + γ

(compare with roo μ A protons = 0x10 /s)

→ so far only succeeded in 2 cases: $13N(p,\gamma)$ at Louvain la Neuve and $21Na(p,\gamma)$ in TRIUMF (for capture reaction)

DRAGON @ TRIUMF

Results

Example III: ³²Cl(p, γ)³³Ar

			$^{32}\mathrm{Cl}(p,\gamma)^{33}\mathrm{Ar}$	$Q=3.34~{\rm MeV}$		
E_x	J^{π}	ℓ_i	$n\ell_f$	C^2S_f	$S(E_0) \ ({ m MeV b})$	
0.00	$\frac{1}{2}$	p	$2s_{1/2}$	0.080	7.00×10^{-3}	
		p	$1d_{3/2}$	0.672	6.14×10^{-3}	
1.34	$\frac{3}{2}$ $\frac{1}{1}$	p	$1d_{3/2}$	0.185	2.62×10^{-3}	
1.79	$\frac{5}{2}\frac{+}{1}$	p	$1d_{3/2}$	0.145	2.74×10^{-3}	2 - 3
2.47	$\frac{3}{2}\frac{+}{2}$	p	$2s_{1/2}$	0.031	6.16×10^{-3}	
		p	$1d_{3/2}$	0.167	1.67×10^{-3}	2
3.15	$\frac{3}{2}\frac{+}{3}$	p	$2s_{1/2}$	0.068	1.46×10^{-2}	2 ^{4 -6} E.=
		p	$1d_{3/2}$	0.516	3.01×10^{-3}	K
E_x	E_p	J^{π}	Γ_{γ} (eV)	Γ_p (eV)	$\omega\gamma$ (eV)	ē-10
3.43	0.09	5+ 22	1.77×10^{-2}	8.7×10^{-18}	8.7×10^{-18}	-14
3.56	0.22	$\frac{7}{2}$ +	1.94×10^{-3}	1.13×10^{-9}	1.51×10^{-9}	
3.97	0.63	$\frac{5}{2}\frac{+}{3}$	1.54×10^{-2}	2.22×10^{-2}	9.09×10^{-3}	. F
4.19	0.85	$\frac{1}{2}^{+}_{2}$	1.54×10^{-1}	46.74	5.12×10^{-2}	
4.73	1.39	$\frac{3}{2}$ $\frac{+}{4}$	8.48×10^{-2}	100.3	5.65×10^{-2}	<u>د</u>

TABLE V. Nonresonant direct capture transitions and the astrophysical S factors; resonance energies, γ widths, proton widths, and resonance strengths for ${}^{32}\text{Cl}(p,\gamma){}^{33}\text{Ar}$.

Shell model calculations Herndl et al. Phys. Rev. C 52(1995)1078

 \rightarrow proton width strongly energy dependent

 \rightarrow rate strongly resonance energy dependent

NSCL Coupled Cyclotron Facility

Fast radioactive beams at the NSCL:

- low beam intensities
- Impure, mixed beams
- high energies (80-100 MeV per nucleon) (astrophysical rates at 1-2 MeV per nucleon)

 \rightarrow great for indirect techniques

- Coulomb breakup
- Transfer reactions
- Decay studies
- . . .

Setup

SEGA Ge-array

S800 Spectrometer

JIN

New ³²Cl(p, γ)³³Ar rate – Clement et al. PRL 92 (2004) 2502

Doppler corrected γ -rays in coincidence with 33Ar in S800 focal plane:

Science with CCF reaccelerated beams

Overview of the FRIB Layout

ReA12 and Experimental Areas

- A full suite of experimental equipment will be available for fast, stopped and reaccelerated beams
- New equipment

Science with reaccelerated beams at FRIB

