Reaction rates in the Laboratory

Example I: $^{14}\text{N}(p,\gamma)^{15}\text{O}$

- slowest reaction in the CNO cycle
 - Controls duration of hydrogen burning
 - Determines main sequence turnoff – glob. cluster ages

- stable target \rightarrow can be measured directly:

 Accelerator

 Proton beam

 $\text{gamma-ray detectors}$

 N-target

 $\text{Faraday cup to collect charge}$

- but cross sections are extremely low:
 \rightarrow Measure as low an energy as possible
 - then extrapolate to Gamow window
Calculating experimental event rates and yields

beam of particles hits target at rest

\[j, \nu \]

\[\text{area } A \]

\[\text{thickness } d \]

assume thin target (unattenuated beam intensity throughout target)

Reaction rate (per target nucleus):

\[\lambda = \sigma j \]

Total reaction rate (reactions per second)

\[R = \lambda A d n_T = \sigma I d n_T \]

with \(n_T \): number density of target nuclei

\(I = j A \): beam number current (number of particles per second hitting the target)

note: \(dn_T \) is number of target nuclei per cm\(^2\). Often the target thickness is specified in these terms.
Events detected in experiment per second R_{det}

$$R_{\text{det}} = R \varepsilon$$

ε is the detection efficiency and can accounts for:

- detector efficiency
 (fraction of particles hitting a detector that produce a signal that is registered)
- solid angle limitations
- absorption losses in materials
- energy losses that cause particles energies to slide below a detection threshold
- …
$^{14}\text{N}(p,\gamma)$ level scheme

γ_0 signature of resonance

Direct gs capture

$\sim 7297 \text{ keV} + E_p$

Gamow window

0.1 GK:

91-97 keV

γ-signature of resonance

6791 keV
LUNA
Laboratory Underground for Nuclear Astrophysics
(Transparencies: F. Strieder http://www.jinaweb.org/events/tucson/Talk_Strieder.pdf)

1:1 Mio cosmic ray suppression
HP Ge-Detector
earth surface
detector without any shielding

3 MeV < E_γ < 8 MeV
\Rightarrow 0.5 counts/s

HP Ge-Detector
LNGS underground
detector with Pb shielding

3 MeV < E_γ < 8 MeV
\Rightarrow 0.0002 counts/s
400 kV LUNA accelerator

Inline-Crockcroft-Walton power supply inside tank mixture N_2/CO_2 @ 20 bar

$U_{\text{max}} = 50 - 400$ kV

$H\text{V-ripple} = 20$ Vpp

$\Delta E_{\text{max}} = 0.07$ keV (meas.)

ion beams: protons, alphas

$I_{\text{max}} = 700$ μA
Experiment – additional shielding
low energy γ background

$^{14}\text{N}(p,\gamma)^{15}\text{O}$

beam induced background

$^{11}\text{B}(p,\gamma)^{12}\text{C}$ (also $^{18}\text{O}(p,\gamma)^{19}\text{F}$)

TiN (deposited) on Copper thickness 50 keV

$E_p = 145$ keV
\(\gamma \) spectrum (HP-Ge) for \(^{14}\text{N}(p,\gamma)^{15}\text{O} \)

\[\gamma_6793 \]

\(^{14}\text{N}(p,\gamma)^{15}\text{O} \)

\(E_p = 140 \text{ keV} \)

Counts

\(E_{\gamma} [\text{keV}] \)

6700 6800 6900 7000 7100 7200 7300 7400 7500
Results:

New $S(0)=1.7 \pm 0.2$ keVb (NACRE: 3.2 ± 0.8)
New Resonance?

Infinite thick target measurement TUNL 2001

No confirming evidence in UNC data 2002
Effect that speculative resonance would have had
Example II: $^{21}\text{Na}(p,\gamma)^{22}\text{Mg}$

problem: ^{21}Na is unstable (half-life 22.5 s)

difficulty: beam intensity typically 10^{7-11} 1/s

(solution: radioactive beam experiment in inverse kinematics: $^{21}\text{Na} + p \rightarrow ^{22}\text{Mg} + \gamma$

\rightarrow so far only succeeded in 2 cases: $^{13}\text{N}(p,\gamma)$ at Louvain la Neuve and $^{21}\text{Na}(p,\gamma)$ in TRIUMF (for capture reaction)
DRAGON
Detector of Recoils And Gammas Of Nuclear reactions

Recoil Detectors
Final Focus Box
Magnetic Quads
Electrostatic Dipole
Mass Slit Box
IC/PGAC Stop
MCP Start
Magnetic Dipole
Magnetic Quads
Gas Target
Gamma Array
Magnetic Quads
Charge Slit Box
Magnetic Dipole
Electrostatic Dipole
Mass Slit Box
Quads
Results

Example III: $^{32}\text{Cl}(p,\gamma)^{33}\text{Ar}$

TABLE V. Nonresonant direct capture transitions and the astrophysical S factors; resonance energies, γ widths, proton widths, and resonance strengths for $^{32}\text{Cl}(p,\gamma)^{33}\text{Ar}$.

<table>
<thead>
<tr>
<th>E_x</th>
<th>J^π</th>
<th>ℓ_i</th>
<th>$n f_f$</th>
<th>$C^2 S_f$</th>
<th>$S(E_0)$ (MeV b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>$\frac{1}{2}^+$</td>
<td>p</td>
<td>$2s_{1/2}$</td>
<td>0.080</td>
<td>7.00×10^{-3}</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>$1d_{3/2}$</td>
<td>0.672</td>
<td>6.14×10^{-3}</td>
<td></td>
</tr>
<tr>
<td>1.34</td>
<td>$\frac{3}{2}^+$</td>
<td>p</td>
<td>$1d_{3/2}$</td>
<td>0.185</td>
<td>2.62×10^{-3}</td>
</tr>
<tr>
<td>1.79</td>
<td>$\frac{5}{2}^+$</td>
<td>p</td>
<td>$1d_{3/2}$</td>
<td>0.145</td>
<td>2.74×10^{-3}</td>
</tr>
<tr>
<td>2.47</td>
<td>$\frac{3}{2}^+$</td>
<td>p</td>
<td>$2s_{1/2}$</td>
<td>0.031</td>
<td>6.16×10^{-3}</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>$1d_{3/2}$</td>
<td>0.167</td>
<td>1.67×10^{-3}</td>
<td></td>
</tr>
<tr>
<td>3.15</td>
<td>$\frac{3}{2}^+$</td>
<td>p</td>
<td>$2s_{1/2}$</td>
<td>0.068</td>
<td>1.46×10^{-2}</td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>$1d_{3/2}$</td>
<td>0.516</td>
<td>3.01×10^{-3}</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E_x</th>
<th>E_p</th>
<th>J^π</th>
<th>Γ_γ (eV)</th>
<th>Γ_p (eV)</th>
<th>ω_γ (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.43</td>
<td>0.09</td>
<td>$\frac{5}{2}^+$</td>
<td>1.77×10^{-2}</td>
<td>8.7×10^{-18}</td>
<td>8.7×10^{-18}</td>
</tr>
<tr>
<td>3.56</td>
<td>0.22</td>
<td>$\frac{7}{2}^+$</td>
<td>1.94×10^{-3}</td>
<td>1.13×10^{-9}</td>
<td>1.51×10^{-9}</td>
</tr>
<tr>
<td>3.97</td>
<td>0.63</td>
<td>$\frac{5}{2}^+$</td>
<td>1.54×10^{-2}</td>
<td>2.22×10^{-2}</td>
<td>9.09×10^{-3}</td>
</tr>
<tr>
<td>4.19</td>
<td>0.85</td>
<td>$\frac{1}{2}^+$</td>
<td>1.54×10^{-1}</td>
<td>46.74</td>
<td>5.12 \times 10^{-2}$</td>
</tr>
<tr>
<td>4.73</td>
<td>1.39</td>
<td>$\frac{3}{2}^+$</td>
<td>8.48×10^{-2}</td>
<td>100.3</td>
<td>5.65 \times 10^{-2}$</td>
</tr>
</tbody>
</table>

Shell model calculations

\rightarrow proton width strongly energy dependent
\rightarrow rate strongly resonance energy dependent
NSCL Coupled Cyclotron Facility
Installation of D4 steel, Jul/2000
Fast radioactive beams at the NSCL:

- low beam intensities
- Impure, mixed beams
- high energies (80-100 MeV per nucleon)
 (astrophysical rates at 1-2 MeV per nucleon)

→ great for indirect techniques

- Coulomb breakup
- Transfer reactions
- Decay studies
- ...
S800 Spectrometer at NSCL:

Radioactive ^{34}Ar beam 84 MeV/u $T_{1/2}=844$ ms (from 150 MeV/u ^{36}Ar)

Plastic target

SEGA Ge array (18 Detectors)

Focal plane: identify ^{33}Ar

Beam blocker

People:
- D. Bazin
- R. Clement
- A. Cole
- A. Gade
- T. Glasmacher
- B. Lynch
- W. Mueller
- H. Schatz
- B. Sherrill
- M. VanGoethem
- M. Wallace
SEGA Ge-array

S800 Spectrometer
Doppler corrected γ-rays in coincidence with 33Ar in S800 focal plane:

γ-rays from predicted 3.97 MeV state

33Ar level energies measured:

3819(4) keV (150 keV below SM)
3456(6) keV (104 keV below SM)

New 32Cl(p,γ)33Ar rate – Clement et al. PRL 92 (2004) 2502

stellar reaction rate

with experimental data x 3 uncertainty

33Ar level energies measured:

3819(4) keV (150 keV below SM)
3456(6) keV (104 keV below SM)
Science with CCF reaccelerated beams

Rates in pps

- $>10^8$
- 10^7-8
- 10^6-7
- 10^5-6
- 10^4-5
- 10^2-4

direct (p,γ)

direct (p,α) or (α,p) transfer

(p,p), some transfer

Up to here:
For indirect measurements: many
For direct measurements: some important rates

and p-process …

Capabilities:
- sufficient beam intensities for many important measurements
- all beams available once system commissioned
- probably very good beam purity
- none of the measurements identified can be performed at another facility as of now
Overview of the FRIB Layout
ReA12 and Experimental Areas

- A full suite of experimental equipment will be available for fast, stopped and reaccelerated beams
- New equipment
 - Stopped beam area (LASERS)
 - ISLA Recoil Separator
 - Solenoid spectrometer
 - Active Target TPC
Science with reaccelerated beams at FRIB

Rates in pps

- $10^{>10}$
- 10^9-10
- 10^8-9
- 10^7-8
- 10^6-7
- 10^5-6
- 10^4-5
- 10^2-4

Direct measurements for many (α,γ) reactions in p-process

All reaction rates can be indirectly measured including 72Kr waiting point

Most reaction rates up to \simSr can be directly measured

All reaction rates up to \simTi can be directly measured

→ Very strong nuclear astrophysics science case