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Resonant Reactions

The energy range that could be populated in the compound nucleus by capture
of the incoming projectile by the target nucleus is for “direct” reactions:

• for neutron induced reactions:
roughly given by the M.B. energy distribution of the incoming projectile

• for charged particle reactions:
the Gamov window

If in this energy range there is an excited state (or part of it, as states have a width)
in the Compound nucleus then the reaction rate will have a resonant contribution.
(see Pg. 23/24)

If the center of the state is located in (or near) this energy range, then:
• The resonant contribution to the reaction rate tends to dominate by far
• The reaction rate becomes extremely sensitive to the properties of the resonant state
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γT+1
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Reaction:    1 + T          C           F+2 Projectile 1
Target nucleus T
Compound nucleus C
Final nucleus F
Outgoing particle 2

With:

For capture 2 is a γ ray and F=C

Step 1 Step 2

S1: Particle 1 separation energy in C. 

Excited states above S1 are unbound and can decay by emission of particle 1 
(in addition to other decay modes). Such states can serve as resonances

For capture, S1 = Q-value

Er: Resonance energy. Energy needed to populate the center of a resonance state 

Reminder: 2
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Laboratory system
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The cross section contribution due to a single resonance is given by the 
Breit-Wigner formula:
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Spin factor:

1Γ∝ Partial width for decay of resonance
by emission of particle 1
= Rate for formation of Compund

nucleus state

2Γ∝ Partial width for decay of resonance 
by emission of particle 2
= Rate for decay of Compund nucleus

into the right exit channel

Γ Total width is in the denominator as 
a large total width reduces the relative 
probabilities for formation and decay into
specific channels.
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Example:

Resonance contributions are on top of direct capture cross sections
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… and the corresponding S-factor

~ constant S-factor
for direct capture

Not constant S-factor
for resonances
(log scale !!!!)

Note varying widths !
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25Al energy levels:

Each resonance corresponds to 
a level. For example:

Er=3.06 MeV − 2.27 MeV
=790 keV in CM System !

Er LAB=25/24 * 0.790 MeV 
= 0.823 MeV

In Lab system:

So with 823 keV protons on a 
24Mg target at rest one would
hit the resonance (See Pg. 58)

Angular momentum and Parity Conservation:

24Mg: 0+

p: 1/2+

So s-wave protons can populate 1/2+ resonances
p-wave protons can populate 1/2-, 3/2- resonances

So the 823 keV resonance with 3/2- is a p-wave resonance
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Energy dependence of width’s

Partial and total widths depend sensitively on the decay energy. Therefore:
• widths depend sensitively on the excitation energy of the state
• widths for a given state are a function of energy !

(they are NOT constants in the Breit Wigner Formula)

Particle widths: 2
11 )(2 γEPl=Γ

Main energy
dependence
(can be 
calculated)

“reduced width”
Contains the nuclear
physics

Photon widths: 12)( +=Γ lElB γγ

Reduced matrix element

* - see note below
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For particle capture:

r

r

EQE
EE

+=
=

γ

1

Typically Er << Q and mostly also Er << S2 and therefore in many cases:
• Γincoming particle has strong dependence on Er (especially if it is a charged particle !)
• Γoutgoing particle has only weak dependence on Er

So, for capture of particle 1, the main energy dependence of the cross section
comes from λ2 and Γ1
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For other cases:

Particle partial widths have the same (approximate) energy dependence than the
“Penetrability” factor that we discussed in terms of the direct reaction mechanism.
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Partial widths: For example theoretical calculations  (Herndl et al. PRC52(95)1078)

Strong energy dependence
of proton width

Weak changes in 
gamma width

Direct

Res.

Sp=3.34 MeV
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In principle one has to integrate over the Breit-Wigner formula (recall Γ(Ε) ) to obtain
the stellar reaction rate contribution from a resonance. 

There are however 2 simplifying cases:

10.1. Rate of reaction through the wing of a broad resonance

Broad means: broader than the relevant energy window for the given 
temperature (Gamov window for charged particle rates)

In this case resonances outside the energy window for the reaction can 
contribute as well – in fact there is in principle a contribution from the wings
of all resonances. 

22
2

1
2

)2/()(
)()(

Γ+−
Γ

Γ=
rEE

EE ωπσ D

Assume Γ2= const, Γ=const and use simplified



12

Example:
12C(p,γ) 

need cross section
here !

Proceeds mainly
through tail of
0.46 MeV
resonance
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Need rate
about here
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Same energy
dependence
than direct 
reaction

For E << Er very 
weak energy 
dependence

Far from the resonance the contribution from wings has a similar energy dependence
than the direct reaction mechanism.

In particular, for s-wave neutron capture there is often a 1/v contribution at 
thermal energies through the tails of higher lying s-wave resonances.

Therefore, resonant tail contributions and direct contributions to the reaction rate
can be parametrized in the same way (for example S-factor)
Tails and DC are often mixed up in the literature.

Though they look the same, direct and resonant tail contributions are different things:
• in direct reactions, no compound nucleus forms
• resonance contributions can be determined from resonance properties measured
at the resonance, far away from the relevant energy range
(but need to consider interference !)
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Rate of reaction through a narrow resonance

Narrow means: EΔ<<Γ

In this case, the resonance energy must be “near” the relevant energy range 
ΔE to contribute to the stellar reaction rate.

Recall:
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M.B. distribution kT
E

EE
−

∝Φ e)(
All widths Γ(Ε) 
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2D constant over resonance 
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Then one can carry out the integration analytically and finds:
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For the contribution of a single narrow resonance to the stellar reaction rate:

The rate is entirely determined by the “resonance strength” ωγ

Which in turn depends mainly on the total and partial widths of the resonance at 
resonance energies. 

III.68

III.68a
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And reaction rate is determined by the smaller one of the widths !

III.68a
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Summary:
The stellar reaction rate of a nuclear reaction is determined by the sum of

• sum of direct transitions to the various bound states

• sum of all narrow resonances in the relevant energy window

• tail contribution from higher lying resonances

Or as equation: tailsi Res;i stateDC ><+><+><>=< ∑∑ >− vvvv
ii

σσσσ

(Rolfs & Rodney)

Caution: Interference effects are possible (constructive or destructive addition) among
• Overlapping resonances with same quantum numbers
• Same wave direct capture and resonances
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Again as example: (Herndl et al. PRC52(95)1078)

Direct

Res.

Sp=3.34 MeV

Resonance 
strengths
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The Gamow window moves to higher energies with increasing temperature – therefore
different resonances play a role at different temperatures.

Gamov Window:

0.1 GK: 130-220 keV

1 GK:  500-1100 keV
0.5 GK: 330-670 keV

But note: Gamov window has 
been defined for direct reaction
energy dependence ! 
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Some other remarks:

• If a resonance is in or near the Gamov window it tends to dominate
the reaction rate by orders of magnitude

• As the level density increases with excitation energy in nuclei, higher
temperature rates tend to be dominated by resonances, lower
temperature rates by direct reactions.

• As can be seen from Eq. III.68, the reaction rate is extremely 
sensitive to the resonance energy. For p-capture this is due to 
the exp(Er/kT) term AND Γp(E) (Penetrability) !

As Er=Ex-Q one needs accurate excitation energies and masses !
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Example: only relevant resonance in 23Al(p,g)24Si

(for a temperature of 0.4 GK and a density of 104 g/cm3)

~25 keV 
uncertainty

More than
2 mag
error in rate
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Complications in stellar environment

Beyond temperature and density, there are additional effects related to the 
extreme stellar environments that affect reaction rates.

In particular, experimental laboratory reaction rates need a (theoretical) correction
to obtain the stellar reaction rates.

The most important two effects are:

1. Thermally excited target

2. Electron screening

At the high stellar temperatures photons can excite the target. Reactions
on excited target nuclei can have different angular momentum and parity
selection rules and have a somewhat different Q-value.

Atoms are fully ionized in a stellar environment, but the electron gas
still shields the nucleus and affects the effective Coulomb barrier.

Reactions measured in the laboratory are also screened by the atomic 
electrons, but the screening effect is different.
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11.1. Thermally excited target nuclei
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Ratio of nuclei in a thermally populated excited state to nuclei in the ground state 
is given by the Saha Equation:

)12( += Jg

Ratios of order 1 for Ex~kT

In nuclear astrophysics, kT=1-100 keV, which is small compared to typical
level spacing in nuclei at low energies (~ MeV). 

-> usually only a very small correction, but can play a role in select cases if:
• a low lying (~100 keV) excited state exists in the target nucleus
• temperatures are high
• the populated state has a very different rate
(for example due to very different angular momentum or parity
or if the reaction is close to threshold and the slight increase in 
Q-value ‘tips the scale’ to open up a new reaction channel)

The correction for this effect has to be calculated. NACRE, for example, gives 
a correction.
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11.2. Electron screening

The nuclei in an astrophysical plasma undergoing nuclear reactions are 
fully ionized.

However, they are immersed in a dense electron gas, which leads to some shielding
of the Coulomb repulsion between projectile and target for charged particle reactions.

Charged particle reaction rates are therefore enhanced in a stellar plasma, compared
to reaction rates for bare nuclei.

The Enhancement depends on the stellar conditions

)()(
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21 rU
r

eZZrV +=

Bare nucleus
Coulomb

Extra
Screening
potential

(attractive
so <0)

(Clayton Fig. 4-24)
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In general define screening factor f:

barescreened ><=>< vfv σσ

11.2.1. Case 1: Weak Screening

Average Coulomb energy between ions << thermal Energy

kT
n

Ze
<<− 3/1

22

(for a single dominating species)

Means: • high temperature
• low density

(typical for example for stellar hydrogen burning)

Definition of weak screening regime:
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For weak screening, each ion is surrounded by a sphere of ions and electrons
that are somewhat polarized by the charge of the ion (Debeye Huckel treatment)

More positive ions

More electrons

Ion under
consideration
(test charge)

RD
Debye Radius 

Then potential around ion Dr/R
1 e)( −=

r
eZrV

Exp: Quicker drop off
due to screening

224 ξρπ A
D Ne

kTR = ∑ Θ+=
i

ieii YZZ )( 2ξWith

(average change
of charge distribution
due to test charge)

So for r>>RD complete screening
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In weak screening regime, RD >> (R0-R)
And therefore one can assume U(r) ~ const ~ U(0). 

But effect on barrier penetration and reaction rate only for potential between
R and classical turning point R0
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So to first order, barrier for incoming projectile

In other words, we can expand V(r) around r=0:
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Equations III.80 and III.80.a describe a corrected Coulomb barrier for the 
astrophysical environment. 

One can show, that the impact of the correction on the barrier penetrability and 
therefore on the astrophysical reaction rate can be approximated through a
Screening factor f:

kTf /U0e−=

In weak screening U0 << kT and therefore
kT
Uf 01−≈

Summary weak screening:
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11.2.2. Other cases:

Average coulomb energy larger than kT – for high densities and low temperatures

Strong screening:

Intermediate screening:

Again simple formalism available, for example in Clayton

Average Coulomb energy comparable to kT – more complicated but formalisms
available in literature
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11.2.3. Screening in Laboratory Experiments:

If one measures reaction rates in the laboratory, using atomic targets (always),
then atomic electrons screen as well.

In the laboratory one measures screened reaction rates. BUT the screening 
is different from the screening in the stellar plasma. 

• In the star it depends on temperature, density and composition
• In the lab it depends on the material (and temperature ?)

Measured reaction rates need to be corrected to obtain bare reaction rates. These
are employed in stellar models that then include the formalism to calculate the 
screening correction in the astrophysical plasma.
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In the laboratory, screening is described with screening potential Ue:
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Example:

Bare (theory)

(F. Raiola et al. Eur.Phys.J. A13(2002)377)

d(d,p)t with
d-implanted
Ta target


