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The origin of heavy elements in the solar system

each process contribution is a mix of many events !

(Pagel, Fig 6.8)
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Abundance pattern: “Finger print” of the r-process ?

Solar abundance of the elements

Element number (Z)
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But: sun formed ~10 billion years after big bang: many stars contributed to elements
 This could be an accidental combination of many different “fingerprints” ?
 Find a star that is much older than the sun to find “fingerprint” of single event

Tellurium and
Xenon Peak Platinum Peak

r-process only
(subtract s,p
processes)
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Heavy elements in Metal Poor Halo Stars

old stars - formed before Galaxy was mixed
they preserve local pollution from individual nucleosynthesis events

recall:
[X/Y]=log(X/Y)-log(X/Y)solar

CS22892-052
red (K) giant
located in halo
distance: 4.7 kpc
mass ~0.8 M_sol
[Fe/H]= −3.0
[Dy/Fe]= +1.7
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A single (or a few) r-process event(s)
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CS22892-052 (Sneden et al. 2003)

solar r
Cosmo

Chronometer

NEW:
CS31082-001 with U
(Cayrel et al. 2001)

Age: 16  3 Gyr
(Schatz et al. 2002 
ApJ 579, 626)

+-

other, second
r-process to fill
this up ?
(weak r-process)

main r-process
matches exactly solar r-pattern
conclusions ?
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New Observations
r-process elements from single r-process events

in 3 very metal poor stars

 Many more to come from ongoing surveys and followup campaigns (e.g. VLT)

J. Cowan

Solar r-process
elements from 
many events
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r- and s-process elements in stars with varying metallicity

s-process

r-process

~age

s-process:
• later (lower mass stars)
• gradual onset (range of stars)

r-process:
• very early (massive stars)
• sudden onset (no low mass
    star contribution)

(Burris et al. ApJ 544 (2000) 302)

confirms massive stars
as r-process sites
(but includes SN and
 NS-mergers)
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Star to star stability of all elements
 (for very r-rich stars)

Star to star scatter of light vs heavy
for all stars [Fe/H]<-2.5, no s-process 

(J.J. Cowan)

(Honda et al. 2004)

Additional “light” element primary process (LEPP) exists
    (Travaglio et al. 2004 , Montes et al. 2006 to be published)
 It contributes to solar r-process residual abundances

Multiple “r-processes”



8
Ivans et al. 2006

Honda et al. 2006
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Honda et al. 2006
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 Disentangling by isotope?
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Overview heavy element nucleosynthesis

Type II Supernovae~1sT~2-3 GKp-process
((γ,n), ...)

Type II Supernovae ?
Neutron Star Mergers ?

< 1sT~1-2 GK
τn ~ µs, nn~1024 /cm3

r-process
(n-capture, ...)

Massive stars (weak)
Low mass AGB stars (main)

102 yr
and 105-6 yrs

T~ 0.1 GK
τn~ 1-1000 yr, nn~107-8/cm3

s-process
(n-capture, ...)

sitetimescaleconditionsprocess

??
(long if s-
process)

?
(maybe s-process like?)

Light Element
Primary Process
(LEPP) ?
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(γ,n) photodisintegration
Equilibrium favors
“waiting point”

β-decay

Temperature: ~1-2 GK
Density: 300 g/cm3 (~60% neutrons !)

Neutron number

Pr
ot

on
 n

um
be

r

Seed

Rapid neutron
capture

neutron capture timescale: ~ 0.2 µs

The r-process
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Waiting point approximation
Definition: ASSUME (n,γ)-(γ,n) equilibrium within isotopic chain

This is a valid assumption during most of the r-process
      BUT: freezeout is neglected
      Freiburghaus et al. ApJ 516 (2999) 381 showed agreement with dynamical models

How good is the approximation ?

Consequences
During (n,γ)-(γ,n) equilibrium abundances within an isotopic chain are given by: 

• time independent 
• can treat whole chain as a single nucleus in network
• only slow beta decays need to be calculated dynamically

• neutron capture rate independent
     (therefore: during most of the r-process n-capture rates do not matter !)
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Pt

Xe

 78Ni, 79Cu first bottle necks in n-capture flow (80Zn later)
 79Cu: half-life measured 188 ms (Kratz et al, 1991)
 78Ni : half-life predicted  130 – 480 ms
          2 events @ GSI (Bernas et al. 1997)

Ni
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H. Schatz

Nuclear physics in the r-process

Masses (Sn)
(location of the path)

β-decay half-lives
(abundances and
 process speed)

Fission rates and distributions:
• n-induced
• spontaneous
• β-delayed β-delayed n-emission

branchings
(final abundances)

n-capture rates
• in slow freezeout
• maybe in a “weak” r-process ?

Seed production
rates (ααα,ααn, α2n, ..)

ν-phyiscs ?
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Contains information about:
• n-density, T, time
  (fission signatures)
• freezeout 
• neutrino presence
• which model is correct 

But convoluted with nuclear physics:
• masses (set path)
• T1/2, Pn (Y ~ T1/2(prog),
              key waiting points set timescale)
• n-capture rates
• fission barriers and fragments

Sensitivity to astrophysics Sensitivity to nuclear physics

Sensitivity of r-process to astro and nuclear physics

Hot bubble
Classical model

Same nuclear physics

ETFSI-Q masses
ETFSI-1 masses

Same r-process model

A
bu

nd
an

ce

Mass number Mass number

Freiburghaus et al. 1999
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ETFSI-1

Neutron number

S
2n

 (M
eV

)
Shell quenching effect on masses/r-process

CdPdRu

Mo
Zr

r-process path
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ETFSI-Q
(N=82 quenched)

ETFSI-1

Neutron number

S
2n

 (M
eV

)

distinguish

Shell quenching effect on masses/r-process

CdPdRu

Mo
Zr
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Endpoint of the r-process

r-process ended
by n-induced fission

(Z,A)

(Z,A+1)

(Z,A)

(Z+1,A)

(Z,A+1)

n-capture (DC)
fission

β−

fission fission

fission barrier

n-induced fission β-delayed fission spontaneous fission

or spontaneous
fission

(different paths
for different 
conditions)

(Goriely & Clerbaux A&A 348 (1999), 798
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Fission produces A~Aend/2 ~ 125 nuclei 

modification of abundances around A=130 peak

fission products can serve as seed for the r-process
     - are processed again into A~250 region via r-process
     - fission again

fission cycling !

Consequences of fission

Note: the exact endpoint of the r-process and the degree and impact of fission
         are unknown because:

• Site conditions not known – is n/seed ratio large enough to reach fission ?
      (or even large enough for fission cycling ?)
• Fission barriers highly uncertain
• Fission fragment distributions not reliably calculated so far (for fission from 
    excited states !)
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Role of beta delayed neutron emission

Neutron rich nuclei can emit one or more neutrons during β-decay if  Sn<Qβ

(Z,A)

(Z+1,A)

(the more neutron rich, the lower Sn  and the higher Qβ)

(Z+1,A-1)
Sn

γ

n

β−

If some fraction of decay goes above Sn in daughter nucleus
then some fraction Pn of the decays will emit a neutron (in addition to e-

 and ν)

(generally, neutron emission competes favorably with γ-decay - strong interaction !)
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Effects: during r-process: none as neutrons get recaptured quickly
during freezeout           : • modification of final abundance

• late time neutron production (those get recaptured)

before β-decay after β-decay

Calculated r-process production of elements (Kratz et al. ApJ 403 (1993) 216):

smoothing effect from β-delayed n emission !
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Summary: Nuclear physics in the r-process

EffectQuantity

• final abundance pattern
during   freezeout ?
• conditions for waiting point
approximation

neutron capture ratesNA<σv>

• path (very weakly)partition functionsG

• endpoint
• abundance pattern?
• degree of fission cycling

fission (branchings
and products)

final abundance patternβ-delayed n-emission
branchings

Pn

• abundance pattern
• timescale

β-decay half-livesT1/2

pathneutron separation
energy

Sn
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National Superconducting Cyclotron Laboratory at
Michigan State University

New Coupled Cyclotron Facility – experiments since mid 2001

Ion Source:
86Kr beam

86Kr beam
140 MeV/u

86Kr hits Be
 target and
fragments Separated beam

of  r-process
nuclei

Tracking
(=Momentum) Implant beam 

in detector
and observe decay

TOF start

TOF stop
dE detector

Fast beam fragmentation facility – allows event by event particle identification
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H. Schatz

NSCL Coupled Cyclotron Facility

W. Benenson (NSCL) and B. Richards (WKAR)
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Installation of D4 steel, Jul/2000
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First r-process experiments at new NSCL CCF facility (June 02)

New NSCL Neutron detector
NERO

Fast Fragment Beam Si Stack

neutron

3He + n -> t + p

Measure:
• β-decay half-lives
• Branchings for β-delayed n-emission

Detect:
• Particle type (TOF, dE, p)
• Implantation time and location
• β-emission time and location
• neutron-β coincidences

(fragment. 140 MeV/u 86Kr)
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• 4 cm x 4 cm active area
• 1 mm thick
• 40-strip pitch in x and y

dimensions ->1600 pixels

NSCL BCS – Beta Counting System

β
Si Si SiBCS
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NERO – Neutron Emission Ratio Observer

Boron Carbide
     Shielding

Polyethylene
  Moderator

BF3 Proportional
       Counters

3He Proportional
       Counters

Specifications:
• 60 counters total
   (16 3He , 44 BF3)
• 60 cm x 60 cm x 80 cm
  polyethylene block
• Extensive exterior
  shielding
• 43% total neutron
  efficiency (MCNP)
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NERO Assembly
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NERO Efficiency vs. Neutron Energy
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r-process nuclei

Time of flight (m/q)

En
er

gy
 lo

ss
 in

 S
i (

Z)

77Ni78Ni

75Co 74Co 73Co

78Ni
Doubly
Magic !

Fast RIB from fragmentation:
• no decay losses
• any beam can be produced
• multiple measurements in one
• high sensitivity

Particle Identification
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time (ms)time (ms) time (ms)

Fast radioactive beams:
• No decay losses
• Rates as low as 1/day useful !
• Mixed beam experiments easy

H. Schatz

Decay data
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time (ms)

Result for half-life:
110 +100

-60 ms

Compare to theoretical
estimate used:470 ms

Results for the main goal: 78Ni (14 neutrons added to stable Ni) 

Managed to create 11 of the doubly magic 78Ni nuclei in ~ 5 days 
Decay of 78Ni : major bottle-neck for synthesis of heavy elements in the r-process 

Time between arrival and decays:

Statistical
Analysis

 Acceleration of the entire r-process
 Models need to be adjusted to explain observed abundance distribution
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Nuclei with decay detected With neutron in addition
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AA

AA

Pn (%)

Preliminary

Preliminary

T1/2 (s)

Results (Hosmer et al.)
DF+CQRPA Borzov et al. 2005,       QRPA: Moller et al. 2003,        Shell model: Lisetzky & Brown 2005
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H. Schatz

Impact of 78Ni half-life on r-process models
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Same but with present 78Ni Result

need to readjust r-process model parameters
Can obtain Experimental constraints for r-process models
    from observations and solid nuclear physics
 remainig discrepancies – nuclear physics ? Environment ? Neutrinos ?
     Need more data  
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Known half-life

NSCL reach

Reach of future facility
(here: ISF - NSCL upgrade
under discussion)

Bright future for experiments and observations
 Experimental test of r-process models
     is within reach
 Vision: r-process as precision probe

NSCL and future facilities reach

Rb
Sr

Y
Zr
Nb
Mo

105Y

108Zr

112Mo
111Nb

J. Pereira:
(NSCL)
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Final isotopes, for which >90% of progenitors in the r-process path can be reached
experimentally for at least a half-life measurement

 These abundances can be compared with observations
     to test r-process models

ISF
Existing facilities
today

Towards an experimental nuclear physics basis for the r-process

So
la

r r
-
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Collaboration

MSU:
P. Hosmer
R.R.C. Clement
A. Estrade
P.F. Mantica
F. Montes
C. Morton
W.F. Mueller
E. Pellegrini
P. Santi
H. Schatz
M. Steiner
A. Stolz
B.E. Tomlin
M. Ouellette

Mainz:
O. Arndt
K.-L. Kratz
B. Pfeiffer

Notre Dame:
A. Aprahamian
A. Woehr

Maryland:
W.B. Walters

Pacific Northwest Natl. Lab.
P. Reeder

H. Schatz

78Ni Collaboration



44

Overview of common r process models

• Site independent models:
• nn, T, t parametrization (neutron density, temperature, irradiation time)

• S, Ye, t parametrization (Entropy, electron fraction, expansion timescale)

• Core collapse supernovae
• Neutrino wind
• Jets
• Explosive helium burning

• Neutron star mergers
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Site independent approach

nn, T, t parametrization (see Prof. K.-L. Kratz transparencies)

Goal: Use abundance observations as general constraints on r-process
          conditions

          BUT: need nuclear physics to do it

Kratz et al. ApJ403(1993)216

obtain r-process conditions
needed

for which the right N=50 and
N=82 isotopes are 
waiting points
(A~80 and 130 respectively)

 often in waiting point approximation
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S, Ye, τ parametrization

1. Consider a blob of matter with entropy S, electron abundance Ye in NSE
2. Expand adiabatically with expansion timescale τ
3. Calculate abundances - what will happen:

1. NSE
2. QSE (2 clusters: p,n,α and heavy nuclei)
3. α-rich freezeout (for higher S) 

(3a and aan reactions slowly move matter from p,n,α cluster
to heavier nuclei – once a heavy nucleus is created it rapidly 
captures a-particles

as a result large amounts of A~90-100 nuclei are produce
which serve as seed for the r-process

4. r-process phase 
initially: n,γ – γ,n equilibrium
later: freezeout
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Evolution of equilibria: cross : most abundant nucleus
colors: degree of equilibrium with that nucleus
            (difference in chemical potential)
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Results for
neutron to seed ratios:
(Meyer & Brown ApJS112(1997)199)

n/seed is higher for
• lower Ye
       (more neutrons)

• higher entropy
     (more light particles, less
     heavy nuclei – less seeds)
     (or: low density – low 3a
     rate – slow seed assembly)

• faster expansion
     (less time to assemble seeds)

1) high S, moderate Ye
2) low S, low Ye

2 possible scenarios:



49

Neutron
star forms
(size ~ 10 km radius)

Matter evaporated off the hot neutron star
r-process site ?
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How does the r-process work ? Neutron capture !
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r-process in Supernovae ? 
Most favored scenario for high entropy:

Neutrino heated wind evaporating from proto neutron star in core collapse

proto
neutron star
(n-rich)

νe neutrino sphere (ve+n  p+e+ strong opacity
                               because many neutrons present)

νe neutrino sphere (νe+p  n+e+ weak opacity
                               because only few protons present)

weak interactions regulate n/p ratio:

νe+p  n+e+

νe+n  p+e-
faster as νe come from deeper
and are therefore hotter ! 

therefore matter is driven
neutron rich
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Results for Supernova r-process
Takahashi, Witti, & Janka A&A 286(1994)857
(for latest treatment of this scenario see Thompson, Burrows, Meyer ApJ 562 (2001) 887)

density artificially reduced by 
factor 5

can’t produce A~195 anymore

density artificially reduced by 
factor 5.5

A~90 overproduction

artificial parameter to get
A~195 peak (need S increase)

other problem: the α effect
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other problem: the α effect

νe+p  n+e+

νe+n  p+e-

What happens when α-particles form, leaving a mix of α-particles and neutrons ?

Recall equilibrium of nucleons in neutrino wind:

Maintains a slight neutron excess 4.0!
+

np

p

nn

n
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r-process in neutron star mergers ? 
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Destiny of Matter:
red: ejected
blue: tails
green: disk
black: black hole

(here, neutron stars are
co-rotating – tidally locked)

Rosswog et al. A&A 341 (1999) 499
Ejection of matter in NS-mergers
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r-process in NS-mergers

large neutron/seed ratios, fission cycling !

But: Ye free parameter …
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Summary theoretical scenarios

more frequent and
less ejection

less frequent but
more ejection

Summary

1e-6 – 1e-54e-3 – 4e-2Ejected r-process mass
(solar masses)

2.2e-21e-5 - 1e-4Frequency
(per yr and Galaxy)

SupernovaeNS-mergers
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Supernovae NS mergers

Dots: model stars

observations

What does galactic chemical evolution observations tell us ?

 Neutron Star Mergers ruled out as major contributor

Argast et al. A&A 416 (2004) 997

Model star average
with error

Average
ISM


