1. The s-process branches at ^{147}Nd because this isotope has a beta decay half life of 5.3 days (under stellar conditions, this is slightly modified compared to what you would find in a table of terrestrial rates), which is not too many orders of magnitude away from the neutron capture timescale. Below is a simplified scheme of the reaction flows in the Nd/Sm region during the s-process (stable isotopes are marked with thick lines)

As you can see ^{148}Sm and ^{150}Sm are s-only isotopes. The neutron capture rates for a stellar neutron spectrum corresponding to a temperature of kT=30 keV (typical for s-process) have been measured in the laboratory. The ratio of the ^{148}Sm neutron capture rate to the ^{150}Sm neutron capture rate could be determined particularly accurately and was found to be 0.596. This laboratory result can be used directly to determine the neutron density during the s-process (see Winters et al. ApJ300(1986)41 to see how this is really done – here we simplify the problem considerably).

a. [5 pts] Determine the fraction of the reaction flow that branched into the beta decay at ^{147}Nd during the s-process that produced the solar system abundance distribution. You can use the steady flow approximation (which is locally a very good approximation) that tells you that the reaction flow is proportional to $Y\lambda$, where Y is the observed s-process abundance of the nuclide and λ is the rate of destruction per target nucleus. This means you can measure the (relative) flow that occurred during the s-process at any isotope provided you know Y and λ. Pick the suitable isotopes and work with ratios only.

b. [5 pts] Using the measured neutron capture rate for ^{147}Nd at a temperature of kT=30 keV of 2×10^7 cm3/s/mole determine the neutron density during the s-process.
c. [5pts] Determine the relative r-process contribution to the solar abundance of ^{148}Nd using your result from 1a (use same temperature and reaclib database). Compare with the result from Arlandini et al. 1999 (ApJ 525 886) [http://iopscience.iop.org/0004-637X/525/2/886/] for their classical model and their stellar model (also give those two relative r-process contributions).

2. 2. [5 pts] The total mass fraction of all heavy (A>100) r-process nuclei in the solar system is about 1e-7. Given a supernova rate of 2.2e-2/yr/galaxy and a neutron star merger rate of 8e-6/yr/galaxy, calculate the total mass (in solar masses) of A>100 r-process nuclei that has to be ejected in either scenario per event to account for the observed r-process abundances in our Galaxy assuming the respective scenario is the ONLY source of r-process nuclei. Assume that the solar abundance distribution is typical for the whole Galaxy.