Abundances outside the solar neighborhood?

Abundances outside the solar system can be determined through:

- Stellar absorption spectra of other stars than the sun
- Interstellar absorption spectra
- Emission lines from Nebulae (Supernova remnants, Planetary nebulae, …)
- γ-ray detection from the decay of radioactive nuclei
- Cosmic Rays
- Presolar grains in meteorites

What do we expect?
Nucleosynthesis is a gradual, still ongoing process:

- **Big Bang**
- **Star Formation**
- **Ejection of envelope into ISM**
- **Life of a star**
- **Death of a star (Supernova, planetary nebula)**
- **Remnants (WD, NS, BH)**

- H, He, Li
- continuous enrichment, increasing metallicity
- Nucleosynthesis !

Abbreviations
- BH: Black Hole
- NS: Neutron Star
- WD: White Dwarf Star
- ISM: Interstellar Medium
Therefore the composition of the universe is NOT homogeneous!

- **Efficiency of nucleosynthesis cycle depends on local environment**

 For example, star formation requires gas and dust - therefore extremely different metallicities in different parts of the Galaxy.
• “population effect” - enrichment continuous over time (see prev. slide) so metallicity of a star depends on when it was born

\[[\text{Fe/H}] = \log \frac{(\text{Fe/H})}{(\text{Fe/H})_{\text{solar}}} \]

Classical picture:
Pop I: metal rich like sun
Pop II: metal poor \([\text{Fe/H}] < -2\]
Pop III: first stars (not seen)

but today situation is much more complicated - many mixed case …

finally found

metallicity - age relation: old stars are metal poor BUT: large scatter !!!
From MSU Physics and Astronomy Department Website:

Oldest known star, HE 0107-5240

[Fe/H] = -5.1

found in halo (little star formation, lots of old, metal poor stars)
Piecing together the fossil record of chemical evolution

First stars?
HE 1327-2326
[Fe/H] ~ -5.6
(Frebel et al. 2005)

Big Bang

Solar system
[Fe/H] = 0

s-process
stellar burning
Type Ia Novae ...

r-process
CS 22892-052
[Fe/H] = -3.1
(Sneden et al. 2003)

LEPP is new process
(Travaglio et al. 2005, Qian&Wasserburg 2007)
might contribute 10-30% to solar Y-Ag
(Montes et al. 2007)

LEPP?
HD 122563
[Fe/H] = -2.7
(Honda et al. 2006)
Astronomers map the metals in millions of Milky Way stars: Solving mysteries about the birth and growth of the galaxy

From Chiaki Kobayashi

Elemental Abundances

From Chiaki Kobayashi

CK, Karakas, Umeda (2011)
Input: NuGRID stellar yields incl s-process, r-process, SNIIa, ... plus energies
Validation: with SDSS data on stellar dynamics, abundances in Milky Way → Mock SEGUE Obs.

Population synthesis model (MSU)
Currently track: C, N, O, Mg, Ca, Ti, Fe, Co, Zn, Eu, Ba, Sr for stars and gas

Virtual Galaxy Workshop
(MSU, April 2010, O’Shea/Beers)

MW Halo simulations:
Goal: constrain parameters of
Galaxy formation
→ Near Field Cosmology
“population effect (3)” … and also where it was born:

• Galaxy (here halo) has formed over extended periods of time by accretion and merging with other galaxies

• This process is still ongoing at low level

• Stellar composition is characteristic of original galaxy and can be used to disentangle components and merger history

→ Can study Galaxy formation “at home” using nuclear astrophysics

“near field cosmology”

“(Bland-Hawthorn & Freeman, Science 287, 2000)

“Future satellite missions to derive 3D space motions and heavy element (metal) abundances for a billion stars will disentangle the existing web and elucidate how galaxies like our own came into existence.”
Future: GAIA Mission

Data on about 1 Bio stars (1% of galactic population !!!)
Expected to be launched in August 2013 by ESA

Crucial information on which was the dominant mechanism for the formation of the thick disk and other Galactic components is encoded in the chemical properties of their stars.

Gaia shall bring a quantum leap to the solution of this problem, by providing fiducial samples of the different galactic components with both, chemical and full kinematic information.

C. Chiappini
• very different abundance distribution when one looks directly at or near nucleosynthesis sites (before mixing with ISM)

Examples:

(a) Stars where, unlike in the sun, nucleosynthesis products from the interior are mixed into the photosphere

for example discovery of Tc in stars. Tc has no stable isotope and decays with a half-life of 4 Mio years (Merrill 1952)
(b) Supernova remnants - where freshly synthesized elements got ejected

Cas A:
Cas A Supernova Remnant
Hydrogen (orange),
Nitrogen(red),
Sulfur(pink),
Oxygen(green)
by Hubble Space Telescope
Cas A with Chandra X-ray observatory:
red: iron rich
blue: silicon/sulfur rich
Galactic Radioactivity - detected by γ-radiation

1 MeV-30 MeV γ-Radiation in Galactic Survey
(26Al Half life: 700,0000 years, 1.809 MeV line)

44Ti in Supernova Cas-A Location
(Half life: 60 years, 1.157 MeV line)
Analysis of presolar grains found in meteorites

SiC grain

NanoSIMS at Washington University, St. Louis

Primary Ion Sources

Magnet of Mass Spectrometer

Sample Air Lock

Analysis Chamber

Detectors

SE Image

$^{12}\text{C}/^{13}\text{C}$ Ratio Image

SiC grain analysis – and the origin of the grains