

Nuclear structure: the DNA of chemical evolution (Woosley)

The DNA of the cosmos

90	105399	ACCOUNTS NO.												
San	-	10 m	29	Pm130	Pm131	Pm132	Pm133	Pm134	Pm135	Pm136		Pm138	Pm139	Pm1
A. C.	1000		S	2.6s	6.3s	6.2s	15s	22s	49s	1.783 m	2.4m	3.24m	4.15m	5.95
200	1	3880	28	Nd129	Nd130	Nd131	Nd132	Nd133	Nd134	Nd135	Nd136	Nd137	Nd138	Nd1:
1000	Personal		7s	4.9s	13 s	27s	1.567m	1.167m	8.5m	12.4m	50.65m	38.5m	5.04h	5.5
			27	Pr1 28	Pr129	Pr130	Pr131	Pr132	Pr133	Pr134	Pr135	Pr136	Pr137	Pr13
	3.3s	3.14s	4.2s	2.85s	30s	40s	1.51m	1.6m	6.5m	17m	24m	13.1m	1.28h	2.12
58	Ce124	Ce125	Ce126	Ce127	Ce128	Ce129	Ce130	Ce131	Ce132	Ce133	Ce134	Ce135	Ce136	Ce13
	6s	10.2s	51s	34s	3.93m	3.5m	22.9m	10.3m	3.51h	4.9h	3.16d	17.7h	0.185	1.433
57	La123	La124	La125	La126	La127	La 128	La129	La130	La131	La132	La133	La134	La135	La13
	17s	29.21s	1.08m	54s	5.1m	5.23m	11.6m	8.7m	59m	4.8h	3.912h	6.45m	19.5h	9.87
56	Ba122	Ba123	Ba124	Ba125	Ba126	Ba127	Ba128	Ba129	Ba130	Ba131	Ba132	Ba133	Ba134	Ba13
	1.95m	2.7m	11m	3.5m	1.667h	12.7m	2.43d	2.23h	0.106	11.5d	0.101	10.52y	2.417	6.59
55	Cs121	Cs122	Cs123	Cs124	Cs125	Cs126	Cs127	Cs128	Cs129	Cs130	Cs131	Cs132	Cs133	Cs13
55	2.583 m	3.7m	5.88m	30.8s	46.7m	1.64m	6.25h	3.62m	1.336d	29.21m	9.689d	6.48d	100	2.065
54	Xe120	Xe121	Xe122	Xe123	Xe124	Xe125	Xe126	Xe127	Xe128	Xe129	Xe130	Xe131	Xe132	Xe13
	46m	40.1m	20.1h	2.08h	0.09	16.9h	0.09	36.4d	1.92	26.44	4.08	21.18	26.89	5.243
53	I 119	I 120	I 121	I 122	I 123	I 124	I 125	I 126	I 127	I 128	I 129	I 130	I 131	I 13
	19.1m	1.36h	2.12h	3.63m	13.22h	4.176d	59.4d	12.93 d	100	24.99m	1.57e+07y	12.36h	8.025d	2.295
52	Te118	Te119	Te120	Te121	Te122	Te123	Te124	Te125	Te126	Te127	Te128	Te129	Te130	Te13
	6d	4.7d	0.09	154d	2.55	0.89	4.74	7.07	18.84	109d	31.74	33.6d	34.08	1.385
51	Sb 117	Sb 118	Sb 119	Sb 120	Sb 121	Sb 122	Sb 123	Sb 124	Sb 125	Sb 126	Sb 127	Sb 128	Sb 129	Sb 13
	2.8h	5h	1.591d	5.76d	57.21	2.724d	42.79	60.2d	2.759y	12.35d	3.85d	9.01h	4.4h	39.5
50	Sn116	Sn117	Sn118	Sn119	Sn120	Sn121	Sn122	Sn123	Sn124	Sn125	Sn126	Sn127	Sn128	Sn12
	14.54	7.68	24.22	8.59	32.58	43.9y	4.63	129.2d	5.79	9.64d	2.3e+05y	2.1h	59.07m	6.91
49	In115	In116	In117		In119	In120	In121	In122	In123	In124	In125	In126	In127	In12
	95.71	54.41m	1.937h	4.45m	18m	47.3s	3.88m	10.8s	47.4s	3.7s	12.2s	1.64s	3.67s	0.84
48	Cd114	Cd115	Cd116	Cd117	Cd118	Cd119	Cd120	Cd121	Cd122	Cd123	Cd124	Cd125	Cd126	Cd1:
	28.73	44.56d	7.49	3.36h	50.3m	2.69m	50.8s	13.5s	5.24s	2.1s	1.25s	0.65s	0.515s	0.43
47	Ag113	Ag114	Ag115	Ag116	Ag117	Ag118	Ag119	Ag120	Ag121	Ag122	Ag123	Ag124	Ag125	Ag1
	5.37h	4.6s	20m	2.68m	1.213m	3.76s	6s	1.23s	0.78s	0.529s	0.296s	0.172s	0.166s	0.107
46	Pd112	Pd113	Pd114	Pd115	Pd116	Pd117	Pd118	Pd119	Pd120	Pd121	Pd122	Pd123	Pd124	Pd12
-10	21.03h	1.55m	2.42m	50s	11.8s	4.3 s	1.9s	0.92s	0.5s	1.44s	0.519s	0.23 s	0.0993s	0.086
45	Rh111	Rh112	Rh113	Rh114	Rh115	Rh116	Rh117	Rh118	Rh119	Rh120	Rh121	Rh122	Rh123	Rh12
	11s	6.8s	2.8s	1.85s	0.99s	0.68s	0.44s	0.266s	0.467s	0.202s	0.101s	0.0678s	0.0517s	0.045

Basic questions in Nuclear Astrophysics:

- 1. What is the origin of the **elements**
 - origin of elements in our solar composition
 - Understanding compositional fingerprints of astrophysical events
 - Understanding compositional effects in stars, supernovae, neutron stars

- Understand photon, neutrino emission
- Understand how stars explode

SNR 0103-72.6

3. What is the nature of **neutron stars**

NS

JINA a NSF Physics Frontiers Center – www.jinaweb.org

- Identify and address the critical open questions and needs of the field
- Form an intellectual center for the field
- Overcome boundaries between astrophysics and nuclear physics and between theory and experiment
- Attract and educate young people

Nuclear Physics Experiments

JINA

Core institutions:

- Notre Dame
- MSU
- U. of Chicago

Astronomical Observations

Associated:

ANL, ASU, Princeton
UCSB, UCSC, WMU
LANL, Victoria (Canada),
EMMI (Germany),
INPP Ohio, Minnesota
Munich Cluster (Germany),

MoCA Monash (Australia)

Nuclear Theory

http://www.jinaweb.org

Based on National Academy of Science Report

[Committee for the Physics of the Universe (CPU)]

Question 3

How were the elements from iron to uranium made?

→ "Old problems"
Still unsolved !!!

Summary

of the 2012 Nuclear Astrophysics Town Meeting

October 9-10, 2012 at the Westin, Detroit Metro Airport

Organized by the

Joint Institute for Nuclear Astrophysics

Local Organizers:

- Hendrik Schatz
- Sheila Balliet-Miles
- Linna Leslie
- Zach Meisel
- Fernando Montes
- Artemis Spyrou
- Chris Wrede

Sponsors:

- JINA
- National Superconducting Cyclotron Lab at Michigan State University
- European Physical Journal

Disclaimer:

- Opinions of community, not of JINA
- Preliminary and incomplete;
 working groups not finished, personal impressions

Town Meeting

Twitter Feed

Follow:

@NucAstroTown12

- 150 Participants from Nuclear Physics, Astrophysics, and Astronomy
- 22 Plenary Talks, 13 2h working groups

Goals: Generate a white paper with vision of the field in light of NP2010, ASTRO2010, ... (previous nuclear astrophysics white paper from 1999)

Stars

DIANA

SNO+ **Accelerator Facilities** GAIA **Multi-messenger Observations** KEPLER → Luminosity → How do stars mix, rotate, and LENA, HIgS, StAna generate magnetic fields? LANSCE, FRANZ, nTOF > Seismology FRIB, CARIBU → Which stars go supernova? Structure before it explodes? Samples of stars → What are the elements stars make? Stardust As a function of metallicity? Theory: 3D Modeling → A new process? i-process Nuclear cross section → What is the sun's metallicity? extrapolation Big Theme: Validation Woodward Pre-solar grains

Core Collapse Supernovae

Multi-messenger Observations

→ What is the supernova mechanism?

 \rightarrow What is the ν and grav. wave signal?

→ What are the sites of the r-processes?
The LEPP process?

→ Which stars go supernova? GRB?

CARIBU, TRIUMF RIBF, FAIR

→ Elements in Stars
SDSS/APOGEE

SuperK, HALO, SNO+, ...

AEGIS

LAMOST

GAIA

GALAH

Astro Theory:

- Full 3D models
- Realistic progenitors

Nuclear Theory

- ν-oscillations
 understand & implement
- FOS
- r-process nuclei

Novae and Ia Supernovae

Multi-messenger Observations

- → What are the progenitors of type Ia?
- → What phenomena occur on accreting white dwarfs? Novae, type Ia, ... ?
- → Nucleosynthesis contribution?
- → White dwarf masses of Novae? (LSST)

ASTRO-H

→ New types of explosions

GMT, JWST
IRTF, VLT, Gemini, Subaru

→ SN Ia composition (also IR!)

Accelerator Facilities

TRIUMF
For weak rates also FAIR/RIBF
RCNP, TU Tandem
LENA, StAna, ATLAS, ...

Astro Theory:

- Use nucleosynthesis as probe of ignition and progenitors
- Realistic progenitors
- Multi-D models

Nuclear Theory

- Electron capture rates

Neutron stars

Multi-messenger **Observations**

OFT

- → What are the properties of cold dense matter? What is its maximum density?
- → How can we determine Radii, M&R, crust properties from observations?
- → What powers superbursts?
- → Origin of burst oscillations?
- → Are NS Mergers GRBs? r-process site?

Accelerator Facilities

TRIUMF EOS: FRIB, RIBF, FAIR

X-rays

- → thermal
- → radii

RXTE, XMM, Chandra, Swift, ASTROSAT INTEGRAL, MINBAR archive

Square Km Array

Radio

→ pulsars, masses

Astro Theory:

- Realistic NS mergers
- 2D/3D X-ray bursts
- X-ray burst templates For parameter range
- Crust models

Nuclear Theory

- Crust nuclear physics
- EOS constraints (symmetry energy)

Big Bang, First Stars, and Chemical Evolution

High z Observations

- → What is the chemical evolution of Li, F, Ti, ¹⁵N, O-Na, r-process?
- → What are the first stars like?
- → How did dwarf galaxies evolve?
- → Big Bang: Is there primordial ⁶Li? search for signatures beyond SBB

Nuclear physics: For reliable predictions of nucleosynthesis yields of:

- First stars, other stars
- la Supernovae
- Core collapse Supernovae
- Low mass stars
- Neurton star mergers

Near field Observations

SDSS/APOGEE AEGIS LAMOST GAIA GALAH Giant Magellan Telescope VLT, HST, Subaru, ...

Astro Theory:

- Nucleosynthesis of first stars
- Better GCE models
- Nucleosynthesis grids
- Chemistry/Opacities at high density

Summary

Observatories:

Key point: multi messenger

Optical: Giant Magellan Telescope,

spectrograph

UV spectroscopy capability

X-ray Next Gen.: LOFT, ...

γ-ray: NUSTAR, next γ-ray telescope?

Radio: GBT, Square Kilometer Array

GW: LIGO - GW networks

IR: IRTF

v-detectors

Computing/Theory:

Multi-D is path forward across field

- People to adapt codes so they can run at forefront of computing
- Open source
- Make nuclear theory progress applicable to astrophysics

Accelerators:

Unique capabilities of FRIB

- In many presentations, very broad impact
- FRIB + SECAR only real chance for a major step in measurements of reaction rates on unstable nuclei

Multi beam:

[Underground] stable beams (DIANA), γ -beams, neutron beams, ν -beams

Centers: Need for centers (JINA)

- Connect subfields data exchange
- Enable multi-messenger, multi-beam multi-disciplinary approaches needed for the future
- Voice for the field