Endpoints of stellar evolution

The end of stellar evolution is an inert core of spent fuel that cannot maintain gas pressure to balance gravity

Such a core can be balanced against gravitational collapse by electron degeneracy pressure IF the total mass is less than the Chandrasekhar mass limit:

Chandrasekhar Mass:

Only if the mass of a inert core is less than Chandrasekhar Mass M_{ch}

$$M_{Ch} \approx 5.85 Y_e^2 M_{\Theta}$$

Electron degeneracy pressure can prevent gravitational collapse

In more massive cores electrons become relativistic and gravitational collapse occurs (then $p\sim n^{4/3}$ instead of $p\sim n^{5/3}$).

For N=Z
$$M_{Ch}$$
=1.46 M_0

Mass and composition of the core depends on the ZAMS mass and the previous burning stages:

M _{ZAMS}	Last stage	Core	Mass	Result
< 0.3 M ₀	H burning	He		
0.3-8 M ₀	He burning	C,O	- M <m<sub>Ch</m<sub>	core survives
8-12 M ₀	C burning	O,Ne,Mg	··· ···Cn	
> 8-12 M ₀	Si burning	Fe	M>M _{Ch}	collapse

How can 8-12M₀ mass star get below Chandrasekhar limit?

Death of a low mass star: a "Planetary Nebula"

Why "white dwarf"?

• core shrinks until degeneracy pressure sets in and halts collapse

star is HOT (gravitational energy !)

→ star is small

Perryman et al. A&A 304 (1995) 69 HIPPARCOS distance measurements

Where are the white dwarfs?

there (small but hot white (B~V))

Supernovae

If a stellar core grows beyond its Chandrasekhar mass limit, it will collapse.

Typically this will result in a **Supernova explosion**

→ at least the outer part of a star is blown off into space

But why would a collapsing core explode?

a) CO or ONeMg cores that accrete matter from a companion star can get beyond the Chandrasekhar limit:

Further collapse heats star and CO or ONeMg burning ignites explosively

- **→** Whole star explodes no remnant
- b) collapsing Fe core in massive star (but not too massive) → neutron star

Fe cannot ignite, but collapse halted once densities of ~2x nuclear density are reached (repulsive nuclear force)

Some facts about Supernovae:

1. Luminosity:

Supernovae might be the brightest objects in the universe, and can outshine a whole galaxy (for a few weeks)

```
Energy of the visible explosion: \sim 10^{51} ergs (= 1 foe = 1 Bethe)
Total energy : \sim 10^{53} ergs (most in neutrinos)
Luminosity : \sim 10^{9-10} L<sub>0</sub>
```

2. Frequency:

~ 1-10 per century and galaxy

core collapse supernova mechanism

S NSCI

A star ready to die

Gain layer explained

Neutrino absorption and emission via

$$\nu_e + n \longleftrightarrow p + e^-$$

 $\bar{\nu}_e + p \longleftrightarrow n + e^+$

→ Cooling rate ~T⁶

As T~1/r cooling decreases with radius as ~1/r⁶

 \rightarrow Heating ~1/r²

Requires free protons and neutrons

MAX PLANCK INSTITUTE FOR ASTROPHYSICS GARCHING, GERMANY

http://www.mpa-garching.mpg.de

General Relativistic Collapse of Rotating Stellar Cores in Axisymmetry

Harald Dimmelmeier José A. Font Ewald Müller

References:

- Dimmelmeier, H., Font, J. A., and Müller, E., Astron. Astrophys., 388, 917–935 (2002), astro-ph/0204288.
- Dimmelmeier, H., Font, J. A., and Müller, E., Astron. Astrophys., submitted (2002), astro-ph/0220489.

Status of delayed detonation mechanism

Its considered the most promising avenue by all groups

1D Models:

- Reasonable microphysics (neutrino transport) possible
- Most 1D models do not explode (except very low mass end)

2D Models:

- Reasonable microphysics now possible (cutting edge)
- Latest 2D models show some explosions but often too low in energy
 - Garching group gets now explosions for (8.1, 8.8, 9.6, 11.2, 15, and 27 M☉)

3D Models:

- Only exploratory studies with simplified microphysics
- Key results:
 - significant qualitative differences from
 2D to 3D nature of turbulence, SASI very strong in 2D, not at all in 3D
 → 2D might be misleading
 - Tendency of easier explosions from 1D \rightarrow 2D \rightarrow 3D (though debate)

Prospects

- Generally delayed explosion mechanism suspected to solve the problem eventually
- Probably need full 3D to solve the problem

Key effects of multi-D vs 1D:

- Neutrino heating induced convection
 - Pushes shock out and increases gain region
 - Dredges material down into gain region
- SASI (Standing Accretion Shock Instability) would help
 - Possibly not important in 3D?
- Magnetic fields, rotation → might add energy
- Acoustic vibrations?

Tarantula Nebula in LMC (constellation Dorado, southern hemisphere) size: $\sim\!2000$ ly (1ly \sim 6 trillion miles), disctance: $\sim\!170000$ ly

Tarantula Nebula in LMC (constellation Dorado, southern hemisphere) size: \sim 2000ly (1ly \sim 6 trillion miles), disctance: \sim 180000 ly

Supernova 1987A seen by Chandra X-ray observatory, 2000

Shock wave hits inner ring of material and creates intense X-ray radiation

The Crab Nebula in Taurus (VLT KUEYEN + FORS2)

HST picture

Crab nebula SN July 1054 AD

Dist: 6500 ly

Diam: 10 ly, pic size: 3 ly

Expansion: 3 mill. Mph

(1700 km/s)

Optical wavelengths

Orange: H
Red: N
Pink: S
Green: O

Pulsar: 30 pulses/s

Cas A supernova remnant

... seen over 17 years

youngest supernova in our galaxy – possible explosion 1680 (new star found in Flamsteeds catalogue)

3. Observational classes (types):

Type I no hydrogen lines

depending on other spectral features there are sub types Ia, Ib, Ic, ...

Type II hydrogen lines

Why are there different types? Answer: progenitor stars are different

Type II: collapse of Fe core in a normal massive star (H envelope)

Type I: 2 possibilities:

la: white dwarf accreted matter from companion

Ib,c collapse of Fe core in star that blew its H (or He) envelope

into space prior to the explosion

Origin of plateau:

As star expands, photosphere moves inward along the T=5000K contour (H-recombination)

T,R stay therefore roughly fixed = Luminosity constant (as long as photosphere wanders through H-envelope)

There is another effect that extends SN light curves: Radioactive decay!

- → Radioactive isotopes are produced during the explosion
- → there is explosive nucleosynthesis!

44Ti

Mass loss and remnants

Hypernovae and faint SN

