Endpoints of stellar evolution

The end of stellar evolution is an inert core of spent fuel that cannot maintain
gas pressure to balance gravity

Such a core can be balanced against gravitational collapse by electron degeneracy
pressure |F the total mass is less than the Chandrasekhar mass limit:

Chandrasekhar Mass:

Only if the mass of a inert core is less than Chandrasekhar Mass M,

M, ~585Y’M,

Electron degeneracy pressure can prevent gravitational collapse

In more massive cores electrons become relativistic and gravitational
collapse occurs (then p~n*? instead of p~n°3).

For N=Z Mg,=1.46 M,



Mass and composition of the core depends on the ZAMS mass and the previous
burning stages:

M, ams Last stage Core Mass Result

<0.3 M, H burning He b

0.3-8 M, He burning  C,0 > M<Mg, core survives

8-12 M, C burning O,Ne,Mg

/
>8-12 M, Siburning Fe M>M.,  collapse

How can 8-12M, mass star get below Chandrasekhar limit ?




Death of a low mass star: a “Planetary Nebula”

Envelope of star
blown into space

And here’ s the
core |
a “white dwarf”

image: HST

Little Ghost Nebula
distance 2-5 kLy
blue: Olll

green: HIl

red: NII




Why “white dwarf” ?

« core shrinks until degeneracy pressure sets in and halts collapse

—> staris HOT (gravitational energy !)

—p  star is small
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Absolute magnitude, M(Hp)

Perryman et al. A&A 304 (1995) 69
HIPPARCOS distance measurements

Where are the white dwarfs ?

Ve there (small but hot white (B~V))
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Supernovae

If a stellar core grows beyond its Chandrasekhar mass limit, it will collapse.

Typically this will result in a Supernova explosion
- at least the outer part of a star is blown off into space

But why would a collapsing core explode ?

a) CO or ONeMg cores that accrete matter from a companion star can
get beyond the Chandrasekhar limit:

Further collapse heats star and CO or ONeMg burning ignites explosively

—> Whole star explodes — no remnant

b) collapsing Fe core in massive star (but not too massive) - neutron star

Fe cannot ignite, but collapse halted once densities of ~2x nuclear density
are reached (repulsive nuclear force)



Some facts about Supernovae:

1. Luminosity:

Supernovae might be the brightest objects in the universe, and can outshine
a whole galaxy (for a few weeks)

Energy of the visible explosion: ~10°! ergs (= 1 foe = 1 Bethe)
Total energy : ~10°3 ergs (most in neutrinos)
Luminosity :~10%10 L,

2. Frequency:

~ 1-10 per century and galaxy



core collapse supernova mechanism
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3 ©
b A star ready to die @L
Neutron
star forms Matter evaporated off the hot neutron star

(size ~ 10 km radius) r-process site ? 10



Gain layer explained

Neutrino absorption Ve TN<—>D+€E

and emission via _
Ue +p— N+ et

- Cooling rate ~T®  As T~1/r cooling decreases with radius as ~1/r6

- Heating ~1/r? Requires free protons and neutrons
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General Relativistic Collapse
of Rotating Stellar Cores
in Axisymmetry

MAX PLANCK INSTITUTE FOR ASTROPHYSICS
1 i N GIRITI Y] 2% - . .
GARCHING, GERMANY Harald Dimmelmeier
José A. Font

Ewald Miiller

http://www.mpa-garching.mpg.de
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Status of delayed detonation mechanism

Its considered the most promising avenue by all groups

1D Models:
» Reasonable microphysics (neutrino transport) possible
« Most 1D models do not explode (except very low mass end)
2D Models:
« Reasonable microphysics now possible (cutting edge)
« Latest 2D models show some explosions but often too low in energy
« Garching group gets now explosions for (8.1, 8.8, 9.6, 11.2, 15, and 27 Mo)
3D Models:
* Only exploratory studies with simplified microphysics
« Key results:
 significant qualitative differences from
2D to 3D — nature of turbulence, SASI very strong in 2D, not at all in 3D
- 2D might be misleading
« Tendency of easier explosions from 1D - 2D - 3D (though debate)
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Prospects

- Generally delayed explosion mechanism suspected to solve the problem eventually
- Probably need full 3D to solve the problem

Key effects of multi-D vs 1D:

* Neutrino heating induced convection
* Pushes shock out and increases gain region
* Dredges material down into gain region

« SASI (Standing Accretion Shock Instability) would help
* Possibly not important in 3D?

» Magnetic fields, rotation - might add energy

» Acoustic vibrations?
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glo-Austrahan Observatory

.p‘

Tarantula Nebula in LMC (constellation Dorado, southern hemisphere)
size: ~2000ly (1ly ~ 6 trillion miles), disctance: ~170000 ly
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Supernova 1987A seen by Chandra X-ray observatory, 2000

Shock wave hits inner ring of material and creates intense X-ray radiation 17



The Crab Nebula in Taurus

ESO PR Photo 40f/99 ( 17 November 1999 )

(VLT KUEYEN + FORS2)

© European Southern Observatory
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(HSHN)

HST picture

Crab nebula
SN July 1054 AD
Dist: 6500 ly
Diam: 10 ly,
pic size: 3 ly
Expansion: 3 mill. Mph
(1700 km/s)
Optical wavelengths
Orange: H
Red :N
Pink :S
Green : O

Pulsar: 30 pulses/s
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Cas A supernova remnant

... seen over 17 years

youngest supernova in our galaxy — possible explosion 1680
(new star found in Flamsteeds catalogue)
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3. Observational classes (types):

Type | no hydrogen lines

depending on other spectral features there are sub types la, Ib, Ic, ...

Type ll hydrogen lines

Why are there different types ?  Answer: progenitor stars are different

Type ll: collapse of Fe core in a normal massive star (H envelope)
Type I: 2 possibilities:

la: white dwarf accreted matter from companion

Ib,c collapse of Fe core in star that blew its H (or He) envelope
into space prior to the explosion
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Origin of plateau:

earlier:

Supernova light curves

Plateau !

Luminosity (solar units)

H-envelope

outer part: transparent (H)
inner part: opaque (H*)

photosphere

100 150 200
Time (days)

Adapted from Chaisson & McMillan

later:

As star expands, photosphere
moves inward along the
T=5000K contour

(H-recombination)

T,R stay therefore roughly fixed

= Luminosity constant

(as long as photosphere wanders
through H-envelope)
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There is another effect that extends SN light curves: Radioactive decay !
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- Radioactive isotopes are produced during the explosion
—> there is explosive nucleosynthesis !
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Mass loss and remnants

massive stars

low mass stars
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Hypernovae and faint SN
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