Today
- Announcements:
 - HW#11 (the last) is due Wednesday Dec. 7th
 - Extra credit project on Intelligent Design is available it will be due Dec. 2nd at 5:00pm. Please don’t wait till the last minute.
 - Final extra Credit Project – “The limits of science” will be due Dec. 9th at 5:00pm.
 - Exam review 3 has been posted
- I will be away on Thursday. Prof. Schriber will talk about accelerators. He is one of the world’s experts.
- What is the Universe made of?

What are the limits of Science?
- Last Tuesday we talked about Astrology and a few other things.
- There is no scientific evidence for astrology. This is not due to a lack of trying.
- Astrology is practiced in many different ways.
- Human nature may be responsible for why astrology appears to have some validity.
- Science is a process of asking questions and searching for answers. Is it a recipe for understanding everything?

How do we know what things are made of?

The highest magnification possible

We can see pairs of silicon atoms.

Image of Si [110]

0.136nm separation between Si atoms

Xudong Fan, MSU

MSU Center for Advanced Microscopy

http://www.ceo.msu.edu/
What We Made Of?

• We are made out of atoms. The size of atoms is 10^{-9} m = nm
• Atoms are made of nuclei and electrons (+ energy; $E=mc^2$)
• Nuclei are made of neutrons and protons (plus the stuff that binds them, mesons)
• Neutrons, Protons and Mesons are made of quarks
• What are quarks made of? The answer may be strings, but the size is 10^{-35} m too small for us to explore (at the moment).
• What are strings made of?

What are Stars Made Of?

• Cecilia Payne-Gaposchki used absorption spectra of stars to learn that stars are mostly made of hydrogen and helium.
• Broader studies of the universe have found large quantities of hydrogen and helium gas.
• By numbers of atoms the Universe is 91% hydrogen, 8.9% helium, and the rest is everything else.
• This kind of matter is the same type as the matter of which we are made. This is sometimes called luminous matter (if heated it emits a blackbody spectrum).

The absorption spectrum from our Sun

Cecilia Payne-Gaposchki Story

• Studied astronomy at Oxford
• Came to Harvard for graduate study because the only career for women in England in astronomy was teaching
• Was the first person to realize that the stars are mostly made of hydrogen and helium
• Here thesis is widely regarded as the best ever in astronomy.
Homework Problem: Review

Conservation of energy says that the gain in kinetic energy is equal to the loss in potential energy.

\[KE = \frac{1}{2} mv^2 \quad PE = mgh \; \rightarrow \; \frac{1}{2} mv^2 = mgh \rightarrow h = \frac{v^2}{2g} \]

Examples: At A the bead is speeding up. At D it is the fastest, but instantaneously not changing speed in the x. At D acceleration is +y direction. At B acceleration is in –y direction. Speed at B and H is same, but the velocity is not.

Clicker Questions

- Where is the bead moving the fastest?
- Where is the bead moving the slowest?

Hint: The height is related to the speed.

Is there anything else?

- There are three main pieces of evidence that there is much more mass in the universe than that from luminous matter.
 - Gravitational lensing
 - Rotation curves of galaxies
 - Fluctuations in the cosmic microwave background radiation
- It turns out that only 4% of the Universe is made of the same stuff as us./

Gravitational Lensing
Gravitational Lensing results from General Relativity

A Fantastic Picture

Rotation implies acceleration

The force that supplies the acceleration is gravity. More gravity implies a faster rotation.

There is more rotation and hence more gravity than expected at large radii.

http://astrosun2.astro.cornell.edu/academics/courses/astro201/rotation_curves.htm
Most galaxies show this behavior

Conclusions: Galaxies contain a fairly uniform distribution of dark matter. We don’t know what this stuff is. The local density is $5.38 \times 10^{-28} \text{ kg/cm}^3$

Cosmic Microwave Background Radiation

The Universe

Fluctuations in the Cosmic Background

Image of the universe at about 300,000 years after the Big Bang

What we have learned from WMAP

- Within a 1% accuracy the Universe is 13.7 billion years old.
- We don't know what 96% of the Universe is made of.
- The first stars formed about 200 million years after the Big Bang.
- The picture of the background microwave radiation is from 379,000 years after the Big Bang.
- At the present it appears the Universe will expand forever, but since we don't know what dark energy is, this conclusion could change.
What is Dark Matter and Dark Energy?

• We don’t know.
• Dark energy actually acts like anti-gravity and is pushing the universe apart. We can tell this because distance supernova are moving away faster than they should.
• Dark matter is probably some type of undiscovered particle.
 – Particles may interact by the weak force
 – People are looking for WIMPs (Weakly interacting massive particles)
• The new accelerator at CERN in Switzerland may discover supersymmetric matter. Supersymmetric matter is one candidate for cold dark matter.