Some notes on Alkali-\(^3\)He SEOP

Jaideep Singh
University of Virginia
Version 1.10
June 15, 2006

1 Cross Sections and Rates

A particle passes through a finite target region filled with target points. When the particle encounters a
target point, an interaction takes place. The probability that a single interaction occurs \(p_1\) is dependant on
the target point density \([N]\), the length of the target region \(l\), and some factor \(\sigma\) that is dependant solely on
the nature of interaction:

\[
p_1 = \sigma [N] l \quad \rightarrow \quad \sigma = \frac{p_1}{[N] l} = \frac{p_1}{\phi}
\]
(1)

The factor \(\sigma\) is called the interaction cross section and has units of area. It is the probability of a single
interaction per unit target point density per unit target region length. A cross section is useful because it
isolates the part of the interaction probability that is due to the mechanism of the interaction. An equivalent
definition of cross section is the probability of interaction per unit flux, where flux \(\phi\) is the number of target
points per unit cross sectional area.

The interaction rate \(\gamma\) is defined as the probability of an single interaction per unit time:

\[
\gamma = \frac{p_1}{t} = \frac{\sigma [N] l}{t} = \sigma v [N]
\]
(2)

where \(v\) is the relative velocity between particle and the target points. Alternatively, this can rewritten using
the flux per unit time \(\Phi = \frac{\phi}{t}\):

\[
\gamma = \frac{p_1}{t} = \frac{\sigma \phi}{t} = \Phi \sigma
\]
(3)

Both forms of the interaction rate will be used.

2 Alkali Polarization

The local equilibrium alkali polarization is calculated by:

\[
P_A^\infty(r) = P_{\text{light}}(r) \frac{\gamma_{op}(r)}{\gamma_{op}(r) + \gamma(r)}
\]
(4)

where \(\gamma_{op}\) is the optical pumping rate, \(\gamma\) is the total alkali metal relaxation rate. Note that we can essentially
ignore the motion of the alkali atom during the optical pumping cycle because the alkali polarization reaches
equilibrium on a time scales much faster than that determined by it’s thermal velocity. The alkali polarization
can be thought of as spatially “frozen.” [Phys. Rev. A 58, 2282-2294 (1998)]

The optical pumping rate for monochromatic light with a frequency of \(\nu\) is:

\[
\gamma_{op}(r) = \Phi(r) \sigma(\nu)
\]
(5)
where Φ is the number of photons per unit cross sectional area per unit time and σ is the absorption cross section. When both the photon flux and the absorption cross section have a frequency dependence, the optical pumping rate is generalized to:

$$\gamma_{op}(\vec{r}) = \int_0^\infty \Phi(\nu, \vec{r}) \sigma(\nu) d\nu \quad (6)$$

$$\Phi(\nu, \vec{r}) = \frac{\text{number of photons at position } \vec{r} \text{ unit cross sectional area } \times \text{unit time } \times \text{unit frequency interval}}{\text{(7)}}$$

$$\sigma(\nu) = \text{photon absorption cross section at } \nu \quad (8)$$

It is useful to express γ in terms of γ'_{se}, the spin exchange rate from the noble gas to the alkali metal. These quantities are related through the spin exchange efficiency η which is simply the ratio of the spin exchange rate with the noble gas to the total rate of alkali relaxation [Phys. Rev. Lett. 80, 2801-2804 (1998)] and [Phys. Rev. Lett. 91, 123003 (2003)]:

$$\eta = \frac{\gamma'_{se}}{\gamma} \quad (9)$$

Note that this γ'_{se} is not to be confused with γ_{se} which is the spin exchange rate from the alkali metal to the noble gas. These are calculated in the following way:

$$\gamma'_{se} = \langle \sigma v \rangle_{se} [N] \quad (10)$$

$$\gamma_{se} = \langle \sigma v \rangle_{se} [A] \quad (11)$$

where $\langle \sigma v \rangle_{se}$ is the thermal velocity averaged spin exchange cross section (also labeled as k_{se}) and $[N]$ & $[A]$ are the noble gas and alkali metal densities.

3 3He Polarization

3.1 Particle Rate Equations

Neglecting the transfer tube, a cell is composed of a pumping chamber and a target chamber. The 3He is polarized only in the pumping chamber by contact with polarized alkali atoms in vapor form. The number of \pm helium nuclei in the pumping and target chambers, labeled by subscript, is $N_{p,t}^\pm$. The total number of helium nuclei in the pumping and target chamber, labeled by subscript, is $N_{p,t} = N_{p,t}^+ + N_{p,t}^-$. The total number of helium nuclei is $N = N_p + N_t$. The fraction of nuclei in either chamber, labeled by subscript, is $f_{p,t} = N_{p,t}/N$.

Assuming that the alkali polarization reaches equilibrium on time scales much faster than the 3He polarization build-up, then the change in the number of \pm nuclei in either chamber is governed by the following rate equations:

$$\frac{dN_p^+}{dt} = \langle \sigma v \rangle_{se} [A^+]N_p^- - \langle \sigma v \rangle_{se} [A^-]N_p^+ + \left(\frac{N_p}{2} - N_p^+ \right) \Gamma_p + N_t^+ D_t - N_p^+ D_p \quad (12)$$

$$\frac{dN_p^-}{dt} = \langle \sigma v \rangle_{se} [A^-]N_p^+ - \langle \sigma v \rangle_{se} [A^+]N_p^- + \left(\frac{N_p}{2} - N_p^- \right) \Gamma_p + N_t^- D_t - N_p^- D_p \quad (13)$$

$$\frac{dN_t^+}{dt} = N_p^+ D_p - N_t^+ D_t + \left(\frac{N_t}{2} - N_t^+ \right) \Gamma_t \quad (14)$$

$$\frac{dN_t^-}{dt} = N_p^- D_p - N_t^- D_t + \left(\frac{N_t}{2} - N_t^- \right) \Gamma_t \quad (15)$$

The relaxation rates $\Gamma_{p,t}$ represent interactions which show no preference for either state and therefore push equilibrium towards equal amounts of \pm nuclei. The diffusion rate $D_{p(t)}$ is the probability per unit time per nucleus that a nucleus will exit the pumping (target) chamber and enter the target (pumping) chamber.
The rate of change of the total number of particles in the two chambers is given by:

\[
\frac{dN_p}{dt} = \frac{dN_{p}^+}{dt} + \frac{dN_{p}^-}{dt} = N_{t}D_{t} - N_{p}D_{p} \tag{16}
\]

\[
\frac{dN_t}{dt} = \frac{dN_{t}^+}{dt} + \frac{dN_{t}^-}{dt} = N_{p}D_{p} - N_{t}D_{t} \tag{17}
\]

\[
\frac{dN}{dt} = \frac{dN_{p}}{dt} + \frac{dN_{t}}{dt} = 0 \tag{18}
\]

At particle number equilibrium, this implies:

\[
N_{t}D_{t} = N_{p}D_{p} \quad \rightarrow \quad f_{t}D_{t} = f_{p}D_{p} \tag{19}
\]

3.2 Polarization Rate Equations

Polarization is defined as:

\[
P_{p,t} = \frac{N_{p,t}^+ - N_{p,t}^-}{N_{p,t}^+ + N_{p,t}^-} = \frac{N_{p,t}^+ - N_{p,t}^-}{N_{p,t}^+} = f_{p,t}^+ - f_{p,t}^- \tag{20}
\]

\[
N_{p,t}^\pm = \frac{1}{2} \left(1 \pm P_{p,t} \right) \tag{21}
\]

Combining the particle rate equations in the appropriate way and, to reiterate, assuming that the alkali polarization reaches equilibrium very early in the \(^3\)He polarization build-up, then the polarizations of nuclei in the two chambers of the cell are governed by:

\[
\frac{dP_{p}}{dt} = \gamma_{se} \left(P_{A} - P_{p} \right) - \Gamma_{p}P_{p} - D_{p} \left(P_{p} - P_{t} \right) = aP_{p} + bP_{t} + B \tag{22}
\]

\[
\frac{dP_{t}}{dt} = D_{t} \left(P_{p} - P_{t} \right) - \Gamma_{t}P_{t} = cP_{p} + dP_{t} \tag{23}
\]

where the following substitutions are made:

\[
a = - \left(\gamma_{se} + \Gamma_{p} + D_{p} \right) \tag{24}
\]

\[
b = D_{p} \tag{25}
\]

\[
c = D_{t} \tag{26}
\]

\[
d = - \left(\Gamma_{t} + D_{t} \right) \tag{27}
\]

\[
B = \gamma_{se} P_{A} \tag{28}
\]

Note that we are essentially averaging over the motion of the \(^3\)He atom during the spin exchange cycle because the \(^3\)He polarization reaches equilibrium on a time scale much slower than that determined by its thermal velocity. The \(^3\)He atoms essentially sample all parts of pumping chamber during the spin-exchange process and is therefore sensitive to the volume averaged alkali polarization:

\[
P_{A} \equiv \int_{pc} P_{A}^\infty(\vec{r}) \, d^3r \tag{29}
\]

The equilibrium \((t \to \infty) \) polarizations are found by setting the rate equations to zero:

\[
P_{p}^\infty = \frac{B}{bc - ad} \tag{30}
\]

\[
P_{t}^\infty = - \left(\frac{c}{d} \right) P_{p}^\infty \tag{31}
\]

The above can be written in a more illuminating form by noting that \(f_{p}D_{p} = f_{t}D_{t} \) and by some algebra:

\[
P_{p}^\infty = P_{A} \left[\frac{\gamma_{se}f_{p}}{\gamma_{se}f_{p} + \Gamma_{p}f_{p} + \Gamma_{t}f_{t} \left(1 + \frac{f_{t}}{D_{t}} \right)^{-1}} \right] \tag{32}
\]

\[
P_{t}^\infty = \left[1 + \frac{\Gamma_{t}}{D_{t}} \right]^{-1} P_{p}^\infty \tag{33}
\]
The coupled rate equations can be rewritten as a matrix equation:

\[
\mathbf{M} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \\
\mathbf{P} = \begin{bmatrix} P_p \\ P_t \end{bmatrix} \\
\dot{\mathbf{P}} = \begin{bmatrix} B \\ 0 \end{bmatrix} \\
d\dot{\mathbf{P}} = \mathbf{M}\dot{\mathbf{P}} + \mathbf{B}
\]

This equation is solved by finding the eigenvalues of the rate matrix \(\mathbf{M}\). These eigenvalues are the characteristic rates of the system and are labeled as slow and fast:

\[
\Gamma_s = -\frac{1}{2} \left[a + d + \sqrt{(a - d)^2 + 4bc} \right] \\
\Gamma_f = -\frac{1}{2} \left[a + d - \sqrt{(a - d)^2 + 4bc} \right]
\]

The solutions to the coupled rate equations are given by:

\[
P_p(t) = P_p^\infty + [P_p^0 - P_p^\infty - c_p] \exp(-\Gamma_s t) + c_p \exp(-\Gamma_f t) \\
P_t(t) = P_t^\infty + [P_t^0 - P_t^\infty - c_t] \exp(-\Gamma_s t) + c_t \exp(-\Gamma_f t)
\]

where \(P_{p,t}^0\) are set by the initial conditions. Finally, the coefficients \(c_{p,t}\) can be obtained by satisfying the coupled rate equations and after some algebra:

\[
c_p = \frac{\Gamma_s (P_p^\infty - P_p^0) - b P_t^0 - a P_p^0 - B}{\Gamma_f - \Gamma_s} \\
c_t = \frac{\Gamma_s (P_t^\infty - P_t^0) - d P_t^0 - c P_p^0}{\Gamma_f - \Gamma_s}
\]

3.3 Fast Diffusion Limit

In the limit where the diffusion is very fast compared to all other rates, then the characteristic rates of the system become to lowest order:

\[
\Gamma_s = \gamma_{se} f_p + \Gamma_p f_p + \Gamma_t f_t + \mathcal{O} \left(\frac{1}{D_t} \right) = \langle \gamma_{se} \rangle + \langle \Gamma \rangle \\
\Gamma_f = \frac{D_t}{f_p} + \gamma_{se} f_t + \Gamma_p f_p + \Gamma_t f_t + \mathcal{O} \left(\frac{1}{D_t} \right)
\]

where brackets \(\langle \rangle\) refer to an average over all atoms. In the limit \(D_{p,t} \to \infty\), the equilibrium polarizations and coefficients become:

\[
P_p^\infty \to P_A \left[\frac{\gamma_{se} f_p}{\gamma_{se} f_p + \gamma_p f_p + \gamma_t f_t} \right] = P_A \left[\frac{\langle \gamma_{se} \rangle}{\langle \gamma_{se} \rangle + \langle \Gamma \rangle} \right] \\
P_t^\infty \to P_p^\infty \\
c_p = f_p (P_t^0 - P_p^0) \\
c_t = f_t (P_p^0 - P_t^0)
\]

which gives for the polarizations in the two chambers:

\[
P_p(t) = P_p^\infty + [P_p^0 f_p + P_t^0 f_t - P_p^\infty] \exp(-\Gamma_s t) + f_p [P_t^0 - P_p^0] \exp(-\Gamma_f t) \\
P_t(t) = P_t^\infty + [P_p^0 f_p + P_t^0 f_t - P_t^\infty] \exp(-\Gamma_s t) + f_t [P_p^0 - P_t^0] \exp(-\Gamma_f t)
\]
4.1 Introduction

After the fast exponential has decayed away, the polarization in the two chambers evolves identically as if the initial polarization in the two chambers was a volume of average of the true initial polarizations in the two chambers:

\[P(t) = P_p(t) = P_t(t) \]
\[= P_p^\infty [1 - \exp(-\Gamma_p t)] + [P_p^0 f_p + P_t^0 f_t] \exp(-\Gamma_s t) \]
\[= P^\infty [1 - \exp(-\Gamma_s t)] + \langle P^0 \rangle \exp(-\Gamma_s t) \]

3.4 Slow Diffusion Limit

In the limit where the diffusion is very slow compared to all other rates in the system, then the characteristic rates of the system become to lowest order:

\[\Gamma_s \rightarrow \gamma_p = \gamma_{se} + \Gamma_p + D_p + O(D_p^2) \]
\[\Gamma_f \rightarrow \gamma_t = \Gamma_t + D_t + O(D_t^2) \]

where we have relabeled the rates with subscripts \(p, t \) instead of slow and fast which are no longer relevant.

In the limit \(D_{p,t} \rightarrow 0 \), the equilibrium polarizations and coefficients are to lowest order:

\[P_p^\infty = P_A \left[\frac{\gamma_{se}}{\gamma_{se} + \Gamma_p} \right] \left[1 - \frac{D_p}{\gamma_{se} + \Gamma_p} + O(D_p^2) \right] \]
\[P_t^\infty = P_P \left[\frac{\gamma_{se} + \Gamma_p}{\gamma_{se} + \Gamma_p - \Gamma_t} \right] \]
\[c_p = \frac{P_p^0 D_p}{\gamma_{se} + \Gamma_p - \Gamma_t} \]
\[c_t = P_t^0 \left(\frac{D_t}{\Gamma_t} \right) \left[\frac{P_A \gamma_{se} - P_t^0 \gamma_{se} - P_t^0 \Gamma_t}{\gamma_{se} + \Gamma_p - \Gamma_t} \right] \]

which gives for the polarizations in the two chambers:

\[P_p(t) = P_p^\infty [1 - \exp(-\gamma_p t)] + P_p^0 \exp(-\gamma_p t) + D_p \left[\frac{P_p^0}{\gamma_{se} + \Gamma_p - \Gamma_t} \right] \left[\exp(-\gamma_t t) - \exp(-\gamma_p t) \right] \]
\[P_t(t) = P_t^0 \exp(-\gamma_t t) + \left(\frac{D_t}{\Gamma_t} \right) \left[\frac{P_p^\infty [1 - \exp(-\gamma_p t)] + P_p^0 \gamma_{se} - P_p^0 \Gamma_t}{\gamma_{se} + \Gamma_p - \Gamma_t} \right] \left[\exp(-\gamma_t t) - \exp(-\gamma_p t) \right] \]

4 Theoretical Maximum Helium-3 Polarization

4.1 Introduction

To recap, using the fast diffusion limit for a two chambered cell:

\[P_A^\infty(\vec{r}) = P_{\text{light}}(\vec{r}) \left[\frac{\gamma_{op}(\vec{r})}{\gamma_{op}(\vec{r}) + \gamma(\vec{r})} \right] \]
\[P_{\text{HF}}^\infty = P_p^\infty = P_t^\infty = P_A \left[\frac{\gamma_{se} f_p}{\gamma_{se} f_p + \Gamma} \right] \]

where:

\[P_A = \int_{\Omega_c} P_A^\infty(\vec{r}) \, d^3r \]
\[\Gamma = f_p \Gamma_p + f_t \Gamma_t \]
\[f_{p,t} = \frac{\text{number of } {^3}\text{He atoms in chamber } p, t}{\text{total number of } {^3}\text{He atoms}} \]
Note that the optical pumping rate and spin-exchange rate are dependent on the laser intensity and density of alkali atoms respectively:

\[\gamma_{\text{op}}(\vec{r}) = \int_0^\infty \Phi(\nu, \vec{r})\sigma(\nu)\,d\nu \]
\[\gamma_{\text{se}} = \langle \sigma v\rangle_{\text{se}}[A] \]

(68)
(69)

In the limit of infinite laser intensity and infinite alkali density, the theoretical maximum \(^3\)He is:

\[P_{H}^{\text{max}} = \lim_{\Phi[|A|]\to\infty} P_H^\infty \]
\[= \lim_{\Phi[|A|]\to\infty} \left(\int_{pc} P_{\text{light}}(\vec{r}) \left[\frac{\gamma_{\text{op}}(\vec{r})}{\gamma_{\text{op}}(\vec{r}) + \gamma(\vec{r})} \right] d^3r \left[\frac{\gamma_{\text{se}}f_p}{\gamma_{\text{se}}f_p + \Gamma} \right] \right) \]
\[= \left[\lim_{\gamma_{\text{op}}(\vec{r})\to\infty} \int_{pc} P_{\text{light}}(\vec{r}) \frac{\gamma_{\text{op}}(\vec{r})}{\gamma_{\text{op}}(\vec{r}) + \gamma(\vec{r})} d^3r \right] \left[\lim_{\gamma_{\text{se}}\to\infty} \frac{\gamma_{\text{se}}f_p}{\gamma_{\text{se}}f_p + \Gamma} \right] \]
\[= \int_{pc} P_{\text{light}}(\vec{r}) d^3r \]

(70)
(71)
(72)
(73)

which is the volume averaged laser light polarization. From this one would expect that with sufficient amounts of laser intensity and alkali density, the \(^3\)He polarization should saturate at \(\approx 1 \).

However, from many years of practical experience, anecdotal evidence, and detailed optical pumping simulations, this is simply not the case. Typically it is assumed that there are no relaxation mechanisms that are dependent on the laser intensity \(\Phi(\nu, \vec{r}) \) and alkali density \([A] \):

\[\gamma = \langle \sigma v\rangle_{\text{sd}}[N_2]_p + \langle \sigma v\rangle_{\text{sd}}[\text{He}]_p + \langle \sigma v\rangle_{\text{sd}}[\text{Rb}]_p + \langle \sigma v\rangle_{\text{sd}}[\text{K}]_p + \gamma_{\text{wall-p}}(\vec{r}) \]
\[\Gamma_p = \langle \sigma v\rangle_{\text{sd}}[\text{He}-\text{He}]_p + \langle \sigma v\rangle_{\text{sd}}[\text{He}-\text{He}]_p + \Gamma_{\text{wall-p}} \]
\[\Gamma_t = \langle \sigma v\rangle_{\text{sd}}[\text{He}-\text{He}]_t + \langle \sigma v\rangle_{\text{sd}}[\text{He}-\text{He}]_t + \langle \sigma v\rangle_{\text{sd}}[\text{He}-\text{He}]_t + \langle \sigma v\rangle_{\text{sd}}[\text{He}-\text{He}]_t + \Gamma_{\text{wall-t}} \]

\[\frac{\partial \gamma(\vec{r})}{\partial \gamma_{\text{op}}(\vec{r})} = \frac{\partial \Gamma_p}{\partial (\gamma_{\text{se}})} = 0 \]

(74)
(75)
(76)
(77)

where \(\gamma \) and \(\Gamma \) are the total alkali and \(^3\)He relaxation rates, respectively. Note that there is a very small vapor pressure (at most less than one percent relative to the pumping chamber) of alkali atoms in the target chamber under operating conditions. These alkali atoms are essentially unpolarized because they are not exposed to the laser light and are very unlikely to diffuse into the pumping chamber. Therefore spin-exchange collisions with these alkali atoms are (to a good approximation) relaxing for the helium atoms in the target chamber.

Although we do not understand the physical mechanism underlying these extra relaxation mechanisms, we can add phenomenological terms to account for their potential effects. It is most natural to express them as fractions of the optical pumping and spin-exchange rates, since those rates set a useful scale to measure against:

\[X_\alpha = \frac{\partial \gamma(\vec{r})}{\partial \gamma_{\text{op}}(\vec{r})} \]
\[X_\beta = \frac{\partial \Gamma_p}{\partial (\gamma_{\text{se}})} \]

(78)
(79)

Taking into account these terms gives:

\[P_A^\infty(\vec{r}) = P_{\text{light}}(\vec{r}) \left[\frac{\gamma_{\text{op}}(\vec{r})}{\gamma_{\text{op}}(\vec{r})} + \gamma_0(\vec{r}) \right] \]
\[P_H^\infty = P_p = P_t = P_A \left[\frac{\gamma_{\text{se}}f_p}{\gamma_{\text{se}}f_p} + \Gamma_0 \right] \]
\[P_H^{\text{max}} = \lim_{\Phi[|A|]\to\infty} P_H^\infty = \int_{pc} P_{\text{light}}(\vec{r}) d^3r \]

(80)
(81)
(82)

Note that \(X_\alpha \) may have a position dependence. In the following sections, we’ll discuss what is known about \(X_\alpha \) and \(X_\beta \).
4.2 Helium Laser Interaction

It is hard to imagine that there is a direct coupling between the laser light and the helium atoms. The wavelengths that are typically used are far from any known He optical transitions. Even if there was such an interaction, it could only effect the nuclear spin polarization of the helium through the subsequent recoupling of the helium nucleus and helium electrons via the hyperfine interaction. In the ground state of helium, this interaction is zero because the total angular momentum of a closed shell is zero.

4.3 Inefficient Optical Pumping

Inefficient optical pumping refers to either (1) optical pumping with unpolarized light or (2) optical pumping unwanted transitions (D2). If we include the possibility of pumping both the D1 and D2 transitions, then the local equilibrium alkali polarization is calculated by:

$$P^X(\vec{r}) = \frac{P_{D1-light}(\vec{r})\gamma_{opD1}(\vec{r}) - \frac{1}{2}P_{D2-light}(\vec{r})\gamma_{opD2}(\vec{r})}{\gamma_{opD1}(\vec{r}) + \gamma_{opD2}(\vec{r}) + \gamma(\vec{r})}$$

(83)

If we pump with monochromatic D1 light and there is no light dependent relaxation, then the maximum alkali polarization is 1.0. On the other hand, the maximum polarization pumping with pure monochromatic D2 light is −0.5. Note that given the same sense of circular polarizaton, D2 light acts to polarize the alkali into the state opposite relative to that of D1 pumping. Skew pumping essentially reduces the light polarization by a factor of cos(Θ) = ˆk_light · ˆB_holding in the reference frame of the alkali atom. It also results in more light absorption and therefore less light penetrates to the back end of the cell [Phys. Rev. A 66, 033406 (2002)]. Assuming that the D2 optical pumping rate is proportional to the D1 optical pumping rate and that the “extra” relaxation proportional to laser intensity comes purely from inefficient optical pumping, then in the limit of infinite laser intensity:

$$\lim_{\phi \to \infty} P^X(\vec{r}) = P_{D1-light}(\vec{r}) \left[\frac{\cos(\Theta) - \frac{P_{D2-light}(\vec{r})}{2P_{D1-light}(\vec{r})} \gamma_{opD2}(\vec{r})}{1 + \gamma_{opD2}(\vec{r})\gamma_{opD1}(\vec{r})} \right] = P_{D1-light}(\vec{r}) [1 + X_\alpha]^{-1}$$

(84)

If we assume that the skew angle Θ is small, the degree of circular polarization of both D1 and D2 light is the same, and that the D2 pumping rate is small relative to the D1 pumping rate, then X_α due to inefficient optical pumping is:

$$X_\alpha \approx \frac{\Theta^2}{2} + \frac{3}{2} \left[\gamma_{opD2}(\vec{r}) \gamma_{opD1}(\vec{r}) \right]$$

(85)

In practice, it is very difficult to get Θ < 1.0°. On the other hand, Θ ∼ 10° is a very conservative upper estimate for the skew angle, the effect on the local alkali polarization is:

$$0.00015 < X_\alpha \approx \frac{\Theta^2}{2} < 0.015$$

(86)

Note that the “global” effect of skew optical pumping on the helium polarization is larger because it is sensitive to the volume averaged alkali polarization (or equivalently the cumulative effect of many “local” inefficiencies). The “global” effect can only be understood by a full optical pumping simulation. This only increases amount of laser intensity required to maintain a “high” alkali polarization. It limits the highest attainable alkali polarization only through the cos(Θ) term.

To estimate the effect of D2 pumping, we’ll assume that the laser light distrobution is gaussian:

$$\Phi(\nu, \vec{r}) = \Phi_0(\vec{r})G(\nu)$$

$$G(\nu) = \frac{1}{\sigma_1\sqrt{2\pi}} \exp \left(-\frac{(\nu - \nu_i)^2}{2\sigma_1^2} \right)$$

$$\lim_{\sigma_1^2 \to 0} \int_0^\infty G(\nu) d\nu = 1$$

(87)

(88)

(89)
The absorption cross section is lorentzian when dominated by pressure broadening:

$$\sigma_{1,2} = f_{1,2} \sigma_0 L(\nu)$$

$$L(\nu) = \frac{\Gamma_{1,2}}{\pi} \left(\frac{\Gamma_{1,2}}{\nu - \nu_{1,2}} \right)^2$$

$$\lim_{\Gamma_{1,2} \to 0} \int_0^\infty L(\nu) d\nu = 1$$

where $$f_{1,2} = \frac{1.5 + 0.5}{3}$$ is the oscillator strength. For the $$D_1$$ pumping, we'll assume that the emission bandwidth of the laser is much larger than the absorption linewidth, $$\sigma_1 \gg \Gamma_1$$:

$$\gamma_{\text{opD1}}(\vec{r}) \approx \lim_{\Gamma_1 \to 0} \int_0^\infty \Phi(\nu, \vec{r}) \sigma_1(\nu) d\nu$$

$$\approx \Phi_0(\vec{r}) f_1 \sigma_0 \int_0^\infty \left[\lim_{\delta \to 0} L(\nu) G(\nu) \right] d\nu$$

$$\approx \Phi_0(\vec{r}) f_1 \sigma_0 \int_0^{\nu_a} G(\nu) \delta(\nu - \nu_1) d\nu$$

$$\approx \Phi_0(\vec{r}) f_1 \sigma_0 G(\nu_1)$$

For the $$D_2$$ pumping, the absorption peak is in the tail of the emission bandwidth and vice versa. Therefore if we make the assumption that the separation of the two peaks is much larger than either width , $$\nu_1 < \nu_a < \nu_2$$:

$$\gamma_{\text{opD2}}(\vec{r}) \approx \lim_{\Gamma_1 \to 0} \int_0^\infty \Phi(\nu, \vec{r}) \sigma_2(\nu) d\nu$$

$$\approx \Phi_0(\vec{r}) f_2 \sigma_0 \int_0^{\nu_a} \left[\lim_{\Gamma_2 \to 0} L(\nu) G(\nu) \right] d\nu$$

$$\approx \Phi_0(\vec{r}) f_2 \sigma_0 \left(\int_0^{\nu_a} L(\nu) \delta(\nu - \nu_1) d\nu + \int_{\nu_a}^{\infty} \delta(\nu - \nu_2) G(\nu) d\nu \right)$$

$$\approx \Phi_0(\vec{r}) f_2 \sigma_0 [L(\nu_1) + G(\nu_2)]$$

Therefore, an estimate of the effect of inadvertent $$D_2$$ pumping is given as:

$$X_\alpha \approx \frac{3f_2}{2f_1} \left(\frac{G(\nu_2) + L(\nu_1)}{G(\nu_1)} \right)$$

We will take the laser emission to be centered on the $$D_1$$ line, $$\nu_1 = \nu_1$$. Using typical values for optical pumping of Rb:

$$\nu_2 - \nu_1 = \frac{1}{\text{GHz}} \approx \frac{1}{790 \text{ nm}} - \frac{1}{795 \text{ nm}} \approx 7 \times 10^3 \text{ GHz}$$

$$\Gamma_2 = \langle \sigma_2 \rangle_{\text{He}} \approx \frac{20 \text{ GHz}}{\text{amg}} \approx 140 \text{ GHz}$$

$$\sigma_1 \approx 1 \text{ nm} \approx 500 \text{ GHz}$$

gives the following estimates (in units of GHz$$^{-1}$$):

$$G(\nu_1) = \frac{1}{\sigma_1 \sqrt{2\pi}} \approx 8 \times 10^{-4}$$
\[G(\nu_2) = \frac{1}{\sigma_l \sqrt{2\pi}} \exp \left(-\frac{(\nu_2 - \nu_1)^2}{2\sigma_l^2} \right) \approx 10^{-32} \]
(107)

\[L(\nu_1) = \frac{1}{\pi \frac{\nu_1^2}{(\nu_1 - \nu_2)^2 + (\frac{\nu_1}{2})^2}} \approx 5 \times 10^{-7} \]
(108)

\[X_\alpha \approx 3 \left(\frac{G(\nu_2) + L(\nu_1)}{G(\nu_1)} \right) \approx \frac{3\sigma_2 \Gamma_2}{\nu_2 \sqrt{2\pi}} \approx 2 \times 10^{-3} \]
(109)

where \(\nu_2 - \nu_1 \) is just the spin orbit splitting \(\nu_{so} \). Note that the contribution from of the laser light intensity at the \(D_2 \) resonance \((G(\nu_2))\) is very small compared to the contribution of the \(D_2 \) absorption cross section at the center of laser emission spectrum \(L(\nu_1) \).

Another source of inefficiency comes from the possible reabsorption of \(D_1 \) and \(D_2 \) fluorescence. The rate equations that govern the populations of the \(S_\frac{1}{2} \), \(P_\frac{1}{2} \), and \(P_\frac{3}{2} \) are given by:

\[
\dot{s} = -\gamma_{op}s + (\gamma_{rad} + \gamma_{non})(p_1 + p_2)
\]
(110)

\[
\dot{p}_1 = +\gamma_{op}s - (\gamma_{rad} + \gamma_{non})p_1 + \gamma_{mix}(p_2 - p_1)
\]
(111)

\[
\dot{p}_2 = - (\gamma_{rad} + \gamma_{non})p_2 + \gamma_{mix}(p_1 - p_2)
\]
(112)

where \(\gamma_{op} \) is the \(D_1 \) pumping rate, \(\gamma_{rad} \) is the radiative quenching rate, \(\gamma_{non} \) is the non-radiative quenching rate, \(\gamma_{mix} \) is the collisional mixing rate, and \(s, p_1, p_2 \) are the relative populations of the \(S_\frac{1}{2}, P_\frac{1}{2}, \) and \(P_\frac{3}{2} \) states respectively. Note that we have dropped the position dependence, assumed that there is little \(D_2 \) pumping, and assumed that both quenching rates and the collisional mixing rates are the same for both \(P \) states.

At equilibrium, this gives:

\[
s = \frac{\gamma_{rad} + \gamma_{non}}{\gamma_{rad} + \gamma_{non} + \gamma_{op}} \]
(113)

\[
p_1 + p_2 = \frac{\gamma_{op}}{\gamma_{rad} + \gamma_{non} + \gamma_{op}} \]
(114)

\[
p_1 - p_2 = \frac{\gamma_{rad} + \gamma_{non}}{\gamma_{rad} + \gamma_{non} + 2\gamma_{mix}} \]
(115)

\[
p_1 \quad p_2 = 1 + \frac{\gamma_{rad} + \gamma_{non}}{\gamma_{mix}} \]
(116)

Assuming that every fluorescence photon is unpolarized, the local relaxation rate due to reabsorption is estimated by:

\[
\gamma_l = \int \Phi_1(\nu)\sigma(\nu)d\nu
\]
(118)

\[
= \Phi^0_1 \int \frac{\sigma^2(\nu)d\nu}{\sigma(\nu)d\nu}
\]
(119)

\[
\Phi^0_1 = \gamma_{rad}[A] \left[\frac{\gamma_{op}}{\gamma_{rad} + \gamma_{non} + \gamma_{op}} \right] \left[\frac{\gamma_{rad}}{\gamma_{rad} + \gamma_{non}} \right] \]
(120)

\[
\approx \gamma_{op} \int \frac{\sigma(\nu)d\nu}{\sigma^2(\nu)d\nu} \left[\frac{\gamma_{rad}}{\gamma_{rad} + \gamma_{non}} \right]^2 \]
(121)

\[
\langle l \rangle^{-1} = [A] \int \frac{\sigma^2(\nu)d\nu}{\sigma(\nu)d\nu} \]
(122)

where the fluorescence intensity is given as the radiative decay rate times the alkali density times the fraction of atoms in the excited state times the fraction of atoms that undergo radiative decay times the average absorption length \(l \) and we’ve taken advantage of the relative sizes of the different rates [RMP 44 p169-249.
Therefore we can estimate the effect of fluorescence reabsorption:

$$\gamma_f = \gamma_{\text{op}} \left[\frac{\gamma_{\text{rad}}}{\gamma_{\text{rad}} + \gamma_{\text{non}}} \right]^2 \rightarrow X_\alpha \approx \left[\frac{\gamma_{\text{rad}}}{\gamma_{\text{rad}} + \gamma_{\text{non}}} \right]^2 \approx 2.5 \times 10^{-3}$$ \hfill (127)

This is admittedly a very crude estimate, but it is almost certainly good to within one order of magnitude. From skew pumping, inadvertent D_2 pumping, and fluorescence reabsorption, this gives a total estimate of:

$$X_\alpha \approx \frac{\alpha^2}{\pi^3} + \frac{3\sigma_\text{orb}}{v_{\text{rad}} \sqrt{2\pi}} + \left[\frac{\gamma_{\text{rad}}}{\gamma_{\text{rad}} + \gamma_{\text{non}}} \right]^2$$ \hfill (128)

$$0.002 < X_\alpha < 0.02$$ \hfill (129)

In comparison to experiment, [Phys. Rev. Lett. 91, 123003 (2003)] gives $X_\alpha \approx 0.0027$ in some hybrid cells they tested.

4.4 Extra Spin-Exchange Related Couplings

Normally the alkali atom-helium nucleus interaction is written as (in SI) [Walker & Happer, RMP 69, p629 (1997)]:

$$\mathcal{H}_{\text{se}} = - \left[\frac{\mu_0}{4\pi} \frac{8\pi}{3} \delta(\vec{R}) \right] \frac{g_e B g^* \mu N S \cdot \vec{K}}{g_e B g^* \mu N S \cdot \vec{K}}$$ \hfill (130)

where \vec{R} is the separation between the alkali atom valence electron and the helium nucleus. The spin exchange cross section is proportional to the modulus square matrix element of this interaction. Since the alkali atom is much larger than the helium atom, we can evaluate the matrix element of the interaction using the alkali atom wave functions:

$$\sigma_{\text{se}} \propto \left[\frac{\mu_0}{4\pi} \frac{8\pi}{3} g_e B g^* \mu N \right] \left| \langle \psi | \delta(\vec{R}) | \psi \rangle \right|^2 = \left[\frac{2\mu_0}{3} g_e B g^* \mu N \right] \left| \psi(0) \right|^2$$ \hfill (131)

This form of the interaction hamiltonian is incomplete. In principle, the "full" interaction hamiltonian is [Jackson, Classical Electrodynamics, 3rd ed, pages 188-90 (1999)]:

$$\mathcal{H}_{\text{full}} = -\mu_0 \mu_{\text{He}} \cdot \left(\vec{B}_{\text{spin}} + \vec{B}_{\text{orbital}} \right)$$ \hfill (132)

$$\vec{B}_{\text{spin}} = \frac{\mu_0}{4\pi} \left[3 \hat{n} \cdot \vec{\mu}_{\text{electron}} - \frac{8\pi}{3} \vec{\mu}_{\text{electron}} \delta(\vec{R}) \right]$$ \hfill (133)

$$\vec{B}_{\text{orbital}} = \frac{\mu_0}{2\pi} \frac{\mu_B}{R^3} \vec{L}$$ \hfill (134)

The interaction hamiltonian now contains three terms:

$$\mathcal{H}_{\text{full}} = \mathcal{H}_{\text{se}} + \mathcal{H}_{\text{ani}} + \mathcal{H}_{\text{oam}}$$ \hfill (135)

$$\mathcal{H}_{\text{ani}} = -\frac{\mu_0}{4\pi} \frac{g_e B g^* \mu N}{g_e B g^* \mu N} \left[3 \hat{n} \cdot \vec{S} - \frac{R^2 \vec{S} \cdot \vec{K}}{R^3} \right]$$ \hfill (136)

$$\mathcal{H}_{\text{oam}} = -
\frac{\mu_0}{2\pi} \frac{\mu_B g^* \mu N}{R^3} \vec{L} \cdot \vec{K}$$ \hfill (137)
The anisotropic term is the interaction between the long range dipolar field of the electron spin with the helium nucleus. In the literature [D. K. Walter, W. Happer, and T. G. Walker, Phys. Rev. A 58, 3642-3653 (1998)], it is referred to “Anisotropic Spin Exchange.” It acts to polarize the the nuclear spin in an orientation opposite to that of the usual or “isotropic” spin-exchange interaction. The effect of this interaction can be written as [RMP 69]:

$$X_\beta \approx \int \frac{\left(\mathbf{R}' \cdot \mathbf{R} - R'^2\right)|\psi(R')|^2 d^3R'}{16\pi^2 |\psi(0)|^2} \leq 0.025$$

(138)

where the estimate comes from [PRA 58, 3642 (1998)]. This point is discussed in [PRA 66, 032703 (2002)]. Essentially they argue that since the calculation in [PRA 58, 3642 (1998)] correctly estimates the size of the “isotropic” spin exchange rate constant (within 20 percent), their estimate of the “anisotropic” spin exchange rate constant must be roughly as good. Therefore it contributes only a small amount to X_β.

For the ground state atoms, only the isotropic and anisotropic spin exchange terms contribute because $\mathbf{L} = 0$ in the ground state. However, the excited states have $\mathbf{L} > 0$ and therefore the orbital angular momentum term has a contribution. As was mentioned in the previous section, a small fraction (at the level of 1-1000 ppm) of the alkali atoms are in the excited state. These excited states atoms are probably not polarized due to collisional mixing. Therefore any interaction between these excited atoms and helium nuclei are probably spin relaxing. The effect of orbital angular momentum interaction can be written as:

$$X_\beta \approx \left[\frac{\gamma_{\text{op}}}{\gamma_{\text{rad}} + \gamma_{\text{non}}}\right] \int \frac{|\psi_1(R)|^2 + |\psi_3(R)|^2 d^3R}{16\pi^2 g_2 |\psi(0)|^2}$$

(139)

where we assume that the excited atoms are equally distributed between P_1^2 and P_3^2 states.

4.5 Helium Spin-Rotation Interaction

The helium nuclear spin can couple to the angular momentum of the alkali atom helium atom pair rotating about a common axis:

$$\mathcal{H}_{\text{rot}} = f(R)\mathbf{\hat{N}} \cdot \mathbf{\hat{K}}$$

(140)

For He-alkali collisions, the rotational angular momentum $\mathbf{\hat{N}}$ couples much more strongly to the electron spin than to the helium nuclear spin [Phys. Rev. A 56, 2090-2094 (1997)]. Therefore it is assumed that this effect is negligible.

4.6 Wall Interactions

A series of studies have been done to understand the wall relaxation in helium cells. In studies where the lifetime of cell have been measured, it has been found:

1. Alkali coated cells are better than bare wall cells. [PLA 201, p337-43 (1995)]
2. Sol gel coatings appears to increase the lifetimes as well as reduce their variation. [Appl Phys Lett, 77, p2069-71 (2000)]
4. Alkali coated cells exhibit hysteresis. [ibid]
5. Alkali coated cells can be degaussed. [ibid]

1. The alkali polarization is quite often ≈ 1, therefore $X_\alpha \approx 0$.
2. There is an unaccounted for helium relaxation rate that appear proportional to the alkali density and surface to volume ratio.
3. They found the range $0.15 < X_\beta < 1.3$.

4. For small surface to volumes ratios, there is less scatter in X_β.

5. For large surface to volumes ratios, there is larger scatter in X_β.

6. For the cells with the largest X_β for a particular value of surface to volume ratio $\frac{S}{V}$:

$$0.15 \leq X_\beta \leq X_\beta^{\text{max}} \approx (0.4 \text{ cm}) \frac{S}{V}$$ \hspace{1cm} (141)

5 References

Alkali-metal-atom polarization imaging in high-pressure optical-pumping cells
A. Ben-Amar Baranga, S. Appelt, C. J. Erickson, A. R. Young, and W. Happer

Polarization of 3He by Spin Exchange with Optically Pumped Rb and K Vapors
A. Ben-Amar Baranga, S. Appelt, M. V. Romalis, C. J. Erickson, A. R. Young, G. D. Cates, and W. Happer

Hybrid Spin-Exchange Optical Pumping of 3He
Earl Babcock, Ian Nelson, Steve Kadlecek, Bastiaan Driehuys, L. W. Anderson, F. W. Hersman, and Thad G. Walker

Skew light propagation in optically thick optical pumping cells
B. Chann, E. Babcock, L. W. Anderson, and T. G. Walker

Optical Pumping
WILLIAM HAPPER
Rev. Mod. Phys. 44, 169-249 (1972)

Spin-exchange optical pumping of noble-gas nuclei
Thad G. Walker and William Happer
Rev. Mod. Phys. 69, 629-642 (1997)

Estimates of the relative magnitudes of the isotropic and anisotropic magnetic-dipole hyperfine interactions in alkali-metal noble-gas systems
D. K. Walter, W. Happer, and T. G. Walker

Measurements of 3He spin-exchange rates
B. Chann, E. Babcock, L.W. Anderson, T.G. Walker

Spin-rotation interaction of alkali-metal He-atom pairs
Thad G. Walker, Joseph H. Thywissen, and William Happer

Very long nuclear relaxation times of spin polarized helium 3 in metal coated cells
Werner Heil, Hubert Humblot, Ernst Otten, Matthias Schafer, Reinhard Sarkau and Michale Leduc
Sol-gel coated glass cells for spin-exchange polarized 3He
Ming F. Hsu, G. D. Cates, I. Kominis, I. A. Aksay and D. M. Dabbs

Wall Relaxation of 3He in Spin-Exchange Cells
R. E. Jacob, S. W. Morgan, B. Saam, and J. C. Leawoods

3He spin exchange cells for magnetic resonance imaging
R. E. Jacob, S. W. Morgan, and B. Saam

Fundamental mechanisms of 3He relaxation on glass
R.E. Jacob, B. Driehuys, B. Saam

Low-field orientation dependence of 3He relaxation in spin-exchange cells
R. E. Jacob, J. Teter, B. Saam, W. C. Chen and T. R. Gentile

Research on 3He spin filter cells made of quartz glass
V. Hutanu and A. Rupp

Production of highly polarized 3He using spectrally narrowed diode laser array bars

Limits to the Polarization for Spin-Exchange Optical Pumping of 3He