Discovery of the Indium Isotopes

S. AMOS and M. THOENNESSEN*

National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA

Thirty-eight indium isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

* Corresponding author.

Email address: thoennessen@nscl.msu.edu (M. Thoennessen).

CONTENTS

1	Introduct	ion	2				
2	Discover	y of ^{98–135} In	2				
3	Summary 1						
EX	EXPLANATION OF TABLE						
TA	BLE						
	I.	Discovery of Indium Isotopes	15				
RE	REFERENCES FOR TABLE						

1. INTRODUCTION

The discovery of the indium isotopes is discussed as part of the series of the discovery of isotopes which began with the cerium isotopes in 2009 [1]. The purpose of this series is to document and summarize the discovery of the isotopes. Guidelines for assigning credit for discovery are (1) clear identification, either through decay-curves and relationships to other known isotopes, particle or γ -ray spectra, or unique mass and Z-identification, and (2) publication of the discovery in a refereed journal. The authors and year of the first publication, the laboratory where the isotopes were produced as well as the production and identification methods are discussed. When appropriate, references to conference proceedings, internal reports, and theses are included. When a discovery includes a half-life measurement the measured value is compared to the currently adapted value taken from the NUBASE evaluation [2] which is based on the ENSDF database [3].

2. DISCOVERY OF ^{98–135}IN

Thirty-eight indium isotopes from A = 98 - 135 have been discovered so far; these include 2 stable, 16 proton-rich and 20 neutron-rich isotopes. According to the HFB-14 model [4], ¹⁶⁵In should be the last particle stable neutron-rich nucleus (¹⁶⁰In is calculated to be unbound). Along the proton dripline one more isotope is predicted to be stable and it is estimated that five additional nuclei beyond the proton dripline could live long enough to be observed [5]. Thus, there remain 35 isotopes to be discovered. About 50% of all possible indium isotopes have been produced and identified so far.

Figure A summarizes the year of first discovery for all indium isotopes identified by the method of discovery. The range of isotopes predicted to exist is indicated on the right side of the figure. The radioactive indium isotopes were produced using fusion evaporation (FE), projectile fragmentation or projectile fission (PF), light-particle reactions (LP), neutron capture (NC), neutron-induced fission (NF),

FIG. A. Indium isotopes as a function of time they were discovered. The different production methods are indicated. The solid black squares on the right hand side of the plot are isotopes predicted to be bound by the HFB-14 model. On the proton-rich side the light blue squares correspond to unbound isotopes predicted to have lifetimes larger than $\sim 10^{-9}$ s.

photo-nuclear reaction (PN) and spallation reactions (SP). The stable isotopes were identified using mass spectroscopy (MS). Heavy ions are all nuclei with an atomic mass larger than A=4 [6]. Light particles also include neutrons produced by accelerators. In the following, the discovery of each indium isotope is discussed in detail.

^{98,99}In

The discovery of ⁹⁸In and ⁹⁹In was presented in "Production and Identification of ¹⁰⁰Sn" by Schneider *et al.* in 1994 [7]. ⁹⁸In and ⁹⁹In were produced from a beryllium target bombarded by a 1095 A·MeV ¹²⁴Xe beam from the heavy-ion synchrotron SIS at GSI, Darmstadt. The products were separated with the fragment separator FRS and identified in flight by recording magnetic rigidity, multiple time-of-flights, and energy. "The individual isotopes are clearly resolved... The majority of the events are as-

signed to ¹⁰¹Sn, the new isotope ⁹⁹In, and ¹⁰⁰In. The four events at $M/Q \sim 2.0$ and $\Delta E \sim 960$ a.u. in Fig. 2 are preliminarily attributed to ⁹⁸In." 142 events of ⁹⁹In were recorded.

¹⁰⁰In

In 1982 the article, "Investigations of Very Neutron-Deficient Isotopes Below ¹⁰⁰Sn in ⁴⁰Ca-Induced Reactions," by Kurcewicz *et al.* reported the discovery of ¹⁰⁰In [8]. A 4.0 MeV/u ⁴⁰Ca from the heavy-ion accelerator UNILAC at GSI was used to produce ¹⁰⁰In in the fusion evaporation reaction ⁶³Cu(⁴⁰Ca,3n). Beta-delayed protons were measured following online mass separation. These particles were mass separated and analyzed by β - x- and γ - rays. "From systematic considerations... the β -delayed protons observed at 97, 99 and 100 mass numbers were assigned to ⁹⁷Cd, ⁹⁹Cd and ¹⁰⁰In, respectively." No half-life was extracted due to the limited statistics.

¹⁰¹**In**

In "Decay Study of Neutron-Deficient ¹⁰¹In" ¹⁰¹In was reported for the first time in 1988 by Huyse *et al.* [9]. At the Instituut voor Kern- en Stralingsfysica in Leuven a 240 MeV ²⁰Ne beam bombarded a ⁹²Mo target and ¹⁰¹In was separated and identified with the Leuven Isotope Separator On Line LISOL. "The very neutron-deficient nucleus ¹⁰¹In has been identified for the first time by studying the β -delayed γ rays of on-line mass-separated samples. The deduced half-life is 16(3) s." This half-life is included in the weighted average of the current value of 15.1(3) s.

¹⁰²In

In 1981 Beraud *et al.* discovered ¹⁰²In as reported in "Identification and Decay of ¹⁰²In, New Neutron Deficient Isotope Close to ¹⁰⁰In," [10]. An 86 MeV ¹⁴N beam from the Grenoble cyclotron produced ¹⁰²In in the fusion-evaporation reaction ⁹²Mo(¹⁴N,4n). Gamma- and X-rays were measured following mass separation. "Although no X-X ray characteristic of Cd element could be seen due to the presence of an enormous amount of K-X lines associated to ¹⁰²Ag \rightarrow Pd decay (AG/In production ratio > 10³, the four lines never seen before belong necessarily to the ¹⁰²In \rightarrow decay." The measured half-life of 24(4) s agrees with the presently adopted value of 22(1) s.

¹⁰³In

The discovery of ¹⁰³In was described by Lhersonneau *et al.* in "Decay of neutron-deficient ¹⁰³In and ¹⁰³Cd Isotopes" in 1978 [11]. ¹⁴N was accelerated by the Louvain-la-Neuve CYCLONE cyclotron to 72 MeV and bombarded a natural molybdenum filament. ¹⁰³In was produced with the fusion-evaporation reaction ⁹²Mo(¹⁴N,3n) and separated with the online separator LISOL. The isotopes were identified by γ -ray, X-ray, and conversion electron measurements. "The newly discovered activity ¹⁰³In (T_{1/2}=1.08±0.11 min) was found to be populated mainly at 7/2⁺ excited ¹⁰³Cd state at 188 KeV." This half-life is currently the only value measured.

¹⁰⁴In

In 1977 the article "The decay of ¹⁰⁴In" by Varley *et al.* presented the discovery of ¹⁰⁴In [12]. A $\sim 100 \text{ MeV}$ ¹⁶O beam from the Manchester heavy-ion linear accelerator bombarded a ⁹²Mo target to form ¹⁰⁴In in the fusion-evaporation reaction ⁹²Mo(¹⁶O,p3n). ¹⁰⁴In was identified with the He-jet recoil transport system HeJRT. "Measurements of half-lives, excitation functions gamma-x-ray and gamma-gamma coincidences have allowed the identification of gamma rays emitted in the decay of an isomer of ¹⁰⁴In." The half-life of 1.5(2) m is consistent with the current value of 1.80(3) m for this isomer. Previously assigned half-life values of 25(6) m and 4.6(2) m to ¹⁰⁴In [13] could not be confirmed.

¹⁰⁵In

Rivier and Moret describe the ¹⁰⁵In observation of 1975 in "Mise en Evidence de L'isotope ¹⁰⁵In et Etude de la Desintegration ¹⁰⁵In \rightarrow ¹⁰⁵Cd" [14]. Enriched ¹⁰⁶Cd targets were bombarded with 19-31 MeV protons from the Grenoble variable energy cyclotron. ¹⁰⁵In was produced in the (p,2n) reaction and identified by measuring γ - γ coincidences. "A new isotope ¹⁰⁵In was produced by means of the reaction ¹⁰⁶Cd(p,2n)." The measured half-life for the ground state of 5.1(3) m agrees with the currently adopted value of 5.07(7) m. The article was published two years after submission. The ¹⁰⁵In results were included in a separate article submitted two weeks after the paper by Rivier and Moret and published within six months [15]. It should also be mentioned that in 1974 another article reported the discovery of ¹⁰⁵In [16].

¹⁰⁶In

In "New Isotope Indium-106" the discovery of ¹⁰⁶In was reported in 1962 by Catura and Richardson [17]. Enriched ¹⁰⁶Cd targets were bombarded by 14 MeV protons from the UCLA cyclotron. ¹⁰⁶In, produced in the (p,n) charge-exchange reaction was identified by γ -ray measurements following chemical separation. "Measurements on the yield of gamma rays above 1.8 Mev as a function of proton energy indicated the 5.3-min activity to be the result of a *p*,*n* reaction and placed an upper limit on its threshold of 8 Mev. With the above information this activity can definitely be assigned to In¹⁰⁶." The measured half-life of 5.3 m is close to the currently accepted value of 6.2(1) m.

^{107,108}In

In 1949 Mallary and Pool discovered ¹⁰⁷In and ¹⁰⁸In in "Radioactive In¹⁰⁷, In¹⁰⁸, In¹⁰⁹ and Sn¹⁰⁸" [18]. 10 MeV Deuterons and 5 MeV protons from the Mendenhall Laboratory at Ohio State University bombarded enriched ¹⁰⁶Cd and ¹⁰⁸Cd targets to produce ¹⁰⁷In and ¹⁰⁸In, respectively. Decay curves measured with a spectrometer counter and a Wulf unifilar electrometer were recorded following chemical separation. "When cadmium enriched in isotope 106 was bombarded with deuterons and with protons, there was produced in the indium fraction a new radioactive isotope which decayed with a 33 ± 2 min half-life by emitting positrons and gamma-rays in excess of the annihilations radiation.... The mass assignment is thus made to isotope 107 instead of 106... Two genetically related isotopes in tin and indium have been assigned to mass number 108. The indium isotope, which is produced by the decay of the tin isotope and by bombarding cadmium 108 with deuterons, decays with a half-life of about 55 min. by emitting positrons of 2-Mev energy and gamma-rays." These half-lives agree with the presently accepted values of 32.4(3) m and 58.0(12) m for 107 In and 108 In, respectively. A 5-h half-life had previously incorrectly been assigned to 108 In [19].

¹⁰⁹In

¹⁰⁹In was first reported in "Excitation Curves of (α,n) ; $(\alpha,2n)$; $(\alpha,3n)$ Reactions on Silver" by Ghoshal in 1948 [19]. ¹⁰⁹In was produced by bombarding silver targets with α -particles accelerated by the Berkeley 60-in cyclotron up to 37 MeV. The isotopes were separated with a mass-spectrograph and excitation functions and decay curves were recorded. "The 5.2 hr. period is produced by Ag¹⁰⁷(α ,2n)In¹⁰⁹ reaction. The excitation curve is similar to the excitation curve of In¹¹¹, as is expected, since both are products of (α ,2n) reactions." The measured half-life is close to the currently adopted value of 4.167(18) h.

¹¹⁰In

In the 1939 article, "Proton Activation of Indium and Cadmium," Barnes reported the first observation of ¹¹⁰In [20]. Cadmium foils were bombarded by 7.2 MeV protons from the University of Rochester's cyclotron and decay curves were measured with an ionization chamber. "The positron activity with half-life of 65 ± 5 min. has not been previously reported... In¹⁰⁶, In¹⁰⁸ and In¹¹⁰ must be positron emitters, and since Cd¹¹⁰ is ten times as abundant as either Cd¹⁰⁶ or Cd¹⁰⁸ this activity is tentatively assigned to In¹¹⁰." This half-life agrees with the value of the 69.1(5) m isomeric state.

^{111,112}In

"The Radioactive Indium Isotopes of Mass Numbers 111 and 112" by Tendam and Bradt was published in 1947 identifying ¹¹¹In and ¹¹²In [21]. At Purdue University silver targets were bombarded with 15-20 MeV α -particles. Indium was identified by chemical analysis, and the isotopes were identified via excitation energy measurements and decay curves. "It is seen from its excitation curve that the 2.7-day period is the product of an (α ,2n) reaction with a threshold of 15.5 \pm 0.5 MeV and must be assigned to In¹¹¹... Since its excitation curve is almost identical with that of the 66-min. In¹¹⁰, produced by the Ag¹⁰⁷(α ,n)In¹¹⁰ reaction, the 23-min. period must be assigned to mass number 112 as the product of the Ag¹⁰⁹(α ,n)In¹¹² reaction." These half-lives are consistent with the currently accepted values of 2.8047(4) d and 20.56(6) m, for ¹¹¹In and ¹¹²In, respectively. The half-life for ¹¹²In corresponds to an isomeric state. Lawson and Cork had previously assigned a ~20 m half-life to ¹¹¹In in several papers [22,23,24]. Barnes also assigned an 18-20 m half-life to ¹¹¹In and he attributed a 2.7 d half-life to an ¹¹²In isomer in 1939 [20]. Cork and Lawson assigned a 65.0(45) h half-life first to ¹¹³In [23] and later to ¹¹²In [24].

¹¹³In

Wehrli reported the discovery of ¹¹³In in the 1934 article "Das Indium-Isotop 113" [25]. ¹¹³In was identified by means of anode ray spectrography. "Gemeinsam mit E. Meischer habe ich im Bandenspektrum des InJ 2 schwache Kanten festgestellt, welche als Isotopenkanten gedeutet und dem In₁₁₃J zugeordnet wurden." (Together with E. Meischer I have determined two weak edges in the line spectrum

of InJ, which were interpreted as isotope edges and assigned to ¹¹³In.) Further details were presented in a subsequent publication [26].

¹¹⁴In

The isotope ¹¹⁴In was first identified in 1937 by Lawson and Cork in "The Radioactive Isotopes of Indium" [22]. Indium was irradiated with 14 to 20 MeV neutrons produced from the bombardment of lithium with 6.3 MeV deuterons at the University of Michigan. ¹¹⁴In was identified via decay curve measurements. "The 50-day period has so far been observe only when the activation has been with fast neutrons. This therefore might be placed as either an isomer of 112 or 114. It has been tentatively placed as 114." The 50 d half-life agrees with the currently accepted value for the 49.51(1) d isomeric state. The half-life of the ¹¹⁴In ground state is 71.9(1) s. Half-lives of 1 m [27] and 1.1 m [28] had been measured previously but no mass assignments were made. Also, a 13 s half-life had been assigned incorrectly to ¹¹⁴In [29].

¹¹⁵In

Aston described the discovery of ¹¹⁵In in the 1925 article "The Mass Spectra of Chemical Elements, Part VI. Accelerated Anode Rays Continued" [30]. ¹¹⁵In was detected using the accelerated anode ray method with a solution of hydrofluoric acid: "This incorporated into the anode gave a mass spectrum showing one line only at 115."

¹¹⁶In

The isotope ¹¹⁶In was first identified in 1937 by Lawson and Cork in "The Radioactive Isotopes of Indium" [22]. Indium was irradiated with slow neutrons at the University of Michigan. Decay curves of β -activity were measured and half-lives extracted, "...although the 13-second and 54-minute periods could have been associated with either 114 or 116 the are undoubtedly due to 116." The 13 s half-life agrees with the currently adopted value for the ground state of 14.10(3) s. The 54 m half-life corresponds to the 54.29(13) m isomeric state. The 13 s and the 54 m had been previously observed but without a definite mass assignment [31]. In an article published a few months earlier Cork and Thornton had associated a 58 m half-life with ¹¹⁶In, however, without an actual measurement [29].

¹¹⁷In

The discovery of ¹¹⁷In was described in 1937 by Cork and Thornton in the article "The Disintegration of Cadmium with Deuterons" [29]. A 6.3 MeV deuteron beam bombarded metallic cadmium at the University of Michigan. Indium was successively abstracted from chemically separated cadmium and decay curves measured. "The long-period cadmium activity gives rise to a radioactive indium of halflife 2.3 hr." This half-life was assigned to ¹¹⁷In in a table and is consistent with the currently adopted value of the 116.2(3) m isomeric state.

^{118,119}In

In 1949 ¹¹⁸In and ¹¹⁹In were first observed by Duffield and Knight in "In¹¹⁸ and In¹¹⁹ produced by Photo-Disintegration of Tin" [32]. At the University of Illinois, 23 MeV X-rays bombarded enriched ¹¹⁹Sn and ¹²⁰Sn to produce ¹¹⁸In and ¹¹⁹In, respectively. Decay curves were recorded which in the case of ¹¹⁹In was preceded by chemical separation. "An examination of the indium activities produced by the irradiation of tin with 23 MeV betatron x-rays at this laboratory has led to the identification of two additional periods which can be assigned to In¹¹⁸ and In¹¹⁹ on the basis of evidence outlined below." The measured half-lives for ¹¹⁸In (4.5(5) m) and ¹¹⁹In (17.5(10) m) agree with the currently accepted values for isomeric states in these nuclei of 4.364(7) m and 18.0(3) m, respectively.

¹²⁰In

In "Radioactivity of In¹²⁰ and Sb¹²⁰" McGinnis reported the discovery of ¹²⁰In in 1958 [33]. ¹²⁰In was produced in a (n,p) charge-exchange reaction by bombarding natural tin with 20 MeV neutrons. No chemical separation was performed and γ -rays were measured with a scintillation detector. "The data of Table VII are the basis for assigning the 55 s activity to In^{120m}." This half-life is consistent with either of two isomeric states with half-lives of 47.3(5) s and 46.2(8) s.

¹²¹**In**

In 1960 Yuta and Morinaga identified ¹²¹In for the first time in "Study of Heavy Odd-Mass Indium Isotopes from the (γ ,p) Reaction on Tin" [34]. Targets of enriched ¹²²SnO₂ were bombarded by 25 MeV bremsstrahlung from the 25-MeV betatron at Tohoku University. Gamma-ray spectra were measured with a 4"×4" NaI crystal and β decay curves were recorded. "Here, a new peak at 0.94 MeV is clearly seen. This peak decayed with a half-life of 30±3 sec... it is assigned to the $g_{9/2}$ state of In¹²¹." This half-life is consistent with the currently accepted value of 23.1(6) s. Previously reported half-lives of 12 m and 32 m [35] could not be confirmed.

¹²²In

The discovery of ¹²²In by Kantele and Karras was reported in the 1963 publication "New Isotope In¹²²" [36]. A 14-15 MeV beam of neutrons bombarded a ¹²²Sn enriched target at the University of Arkansas 400 kV Cockcroft-Walton accelerator and produced ¹²²In in the (n,p) charge exchange reaction. γ - and β -radiation and γ - γ coincidences were measured. "In connection with a systematic study of the level structure of even tin isotopes resulting from the decay of neutron-excess indium isotopes, a new 7.5-sec activity was found and was assigned to the hitherto unknown isotope In¹²²." This 7.5(8) s half-life could be either one of two isomeric states of 10.3(6) s or 10.8(4) s.

¹²³In

In 1960 Yuta and Morinaga identified ¹²³In for the first time in "Study of Heavy Odd-Mass Indium Isotopes from the (γ ,p) Reaction on Tin" [34]. Targets of enriched ¹²⁴SnO₂ were bombarded by 25 MeV bremsstrahlung from the 25-MeV betatron at Tohoku University. Gamma-ray spectra were measured and β decay curves were recorded. "A peak at 1.10 MeV appears here and has a half-life of 10 sec. It is

assigned to the $g_{9/2}$ state of ¹²³In as in the cases of Sn¹²⁰ and Sn¹²²." The measured half-life of 10(2) s is close to the currently accepted value of 6.17(5) s.

¹²⁴In

In 1964 the article "New Isotope In¹²⁴," by Karras reported the discovery of ¹²⁴In [37]. The neutron generator at the University of Arkansas provided 14-15 MeV neutrons which bombarded enriched ¹²⁴Sn and produced ¹²⁴In in the (n,p) charge exchange reaction. β - and γ -ray spectra were measured. "Irradiation of Sn¹²⁴ samples with 14-15 MeV neutrons was found to produce a new radioactive nuclide which was assigned to In¹²⁴." The measured 3.6 s half-life agrees with the currently adopted value of 3.12(9) s for the ground state or with the 3.7(2) s isomeric state.

¹²⁵In

In "Short-Lived Fission Products" the first observation of ¹²⁵In was reported in 1967 by Fritze and Griffiths [38]. ¹²⁵In was produced via neutron induced fission of ²³⁵U at the McMaster University Reactor. The isotope was identified by its daughter activity following chemical separation. "Proof of the presence of a given nuclide depended on the identification of a known daughter activity resulting from the decay of the unknown short-lived parent, which had been separated completely from daughter activities as soon as possible after the end of the irradiation... Starting 13 min after the end of the irradiation γ -spectra were taken at 7 min intervals and showed the presence of 40 min ¹²³Sn (160 keV) and 10 min ^{125m}Sn (335 keV)."

¹²⁶In

Grapengiesser *et al.* reported the observation of ¹²⁶In in "Survey of Short-lived Fission Products Obtained Using the Isotope-Separator-On-Line Facility at Studsvik" in 1974 [39]. ¹²⁶In was produced by neutron induced fission and identified at the OSIRIS isotope-separator online facility at the Studsvik Neutron Research Laboratory in Nyköping, Sweden. In the long table of experimental half-lives of many different isotopes the half-life of ¹²⁶In is quoted as 1.53(1) s. This value is included in the currently adopted average 1.53(1) s.

^{127–129}In

In 1975 the first identification of ¹²⁷In, ¹²⁸In, and ¹²⁹In was reported by Aleklett *et al.* "Beta-Decay Properties of Strongly Neutron-Rich Nuclei" [40]. The isotopes were produced by thermal-neutron induced fission of ²³⁵U and identified using Studsvik's OSIRIS separator. In Table 2 listing heavy fission fragments from silver to lanthanum, ¹²⁷In, ¹²⁸In, and ¹²⁹In are identified with half-lives as quoted from the report by Grapengiesser [39]. Grapengiesser did not uniquely assign the elements; for ¹²⁷In and ¹²⁸In cadmium or indium are listed as possible element and no element assignment was made for ¹²⁹In. While the half-lives for ¹²⁸In (0.80(3) s) and ¹²⁹In (0.8(3) s) agree, Grapengiesser quotes two values for mass 127 (1.3(2) s and 3.7(1) s) while Aleklett *et al.* quotes only a value of 3.1 s. The half-life of 3.1 s for ¹²⁷In agrees with the current measurement of 3.67(4) s for an isomeric state, the half-lives of 0.8 s agree with the currently adopted values of 0.84(6) s and 0.61(1) s for ¹²⁸In and ¹²⁹In, respectively.

¹³⁰In

"Excited States in the Two-Neutron-Hole Nucleus ${}^{130}_{50}$ Sn₈₀ Observed in the 0.53 sec β^- Decay of 130 In" described the first observation of 130 In by Kerek *et al.* in 1973 [41]. 130 In was produced by neutron induced fission of 235 U at Studsvik, Sweden, and identified utilizing the OSIRIS separator. "Among the high-energy β -rays a short-lived component with the half-life 0.53 \pm 0.05 sec could be observed. Since the E_{β^-} threshold exceeds all other E_{β^-} in the chain, the half-life is assigned to the 130 In \rightarrow 130 Sn decay." This half-life value is included in the calculation of the currently adopted value of 0.54(1) s.

¹³¹In

¹³¹In was discovered by Lund and Rundstam in 1976 as reported in "Delayed-neutron activities produced in fission: Mass range 122-146" [42]. ¹³¹In was produced via neutron fission in a uranium target at the Studsvik R2-0 reactor and separated with the OSIRIS on-line mass-separator facility. 30 ³He neutron counters were used to measure the delayed neutron activities. "The 0.29 sec activity is to be attributed to ¹³¹In for which the β half-life has been determined to be 0.27 ± 0.02 sec." This 0.29(1) s activity agrees with the currently accepted value of 0.28(3) s. The cited value of 0.27(2) s referred to a "to be published article" by De Geer *et al.*.

¹³²In

The discovery of ¹³²In was described in the 1973 article "The First Excited State in the Doubly-Closed-Shell Nucleus ¹³²Sn Populated in the 0.12 s β^- -Decay of ¹³²In" by Kerek *et al.* [43]. ¹³²In was produced by neutron induced fission of ²³⁵U at Studsvik, Sweden, and identified utilizing the OSIRIS separator. "A 0.12±0.02 s beta activity assigned to the decay of ¹³²In and populating an excited state of 4041±2 KeV in the doubly-closed-shell nucleus ¹³²₅₀Sn₈₂ has been observed." This half-life is near the currently accepted value of 0.207(6) s.

^{133,134}In

In 1996 Hoff *et al.* reported the discovery of ¹³³In and ¹³⁴In in "Single-Neutron States in ¹³³Sn" [44]. 1 GeV protons induced fission of uranium carbide at the CERN PS-Booster. Mass separation and β - and γ -decay spectroscopy was performed at the ISOLDE facility. Decay characteristics of of ¹³³In were measured but the half-life was not extracted and assumed to be known: "Some of the present authors attempted to determine the structure of ¹³³Sn at the ISOLDE facility at the CERN SC, more than a decade ago... Although two β -decay states $g_{9/2}^{-1}$ and $p_{1/2}^{-1}$, were expected, only one half-life of 180±15 ms was observed." No specific reference is given but most likely it referred to a 1981 conference proceeding by Blomqvist *et al.* [45]. ¹³³Sn was also populated by β -delayed neutron emission from ¹³⁴In. "Some distinct transitions in ¹³³Sn clearly visible, in particular, those at 854, 1561, and 2005 KeV. An analysis of their time dependence with respect to the beam pulses gave the half-life of ¹³⁴In as 138±8 ms." The quoted half-life for ¹³³In agrees with the currently accepted half-life of 165(3) ms and the measured half-life for ¹³⁴In is included in the currently adopted weighted average of 140(4) ms.

¹³⁵In

The 2002 article, "Selective Laser Ionization of $N \ge 82$ Indium Isotopes: The New r-process Nuclide 135In," by Dillmann *et al.* discussed the first identification of ¹³⁵In [46]. A tantalum converter was bombarded with 1.4 GeV protons at the CERN ISOLDE facility. Neutrons from the converter induced fission in an adjacent UC_x/graphite target.¹³⁵In was separated and identified using laser ionization. The ISOLDE UCx at CERN produced 1.4 GeV protons which bombarded graphite with ²³⁸U and carbon with a tantalum converter. Products were identified by means of ionization and mass separation. "With 92(10) ms ¹³⁵In, a new r-process nuclide has been identified..." This half-life is currently the only measured value.

3. SUMMARY

The discoveries of the known indium isotopes have been compiled and the methods of their production discussed. The first measured half-lives of several isotopes (¹⁰⁴In, ¹⁰⁸In, ¹¹¹In, ¹¹²In, ¹¹⁴In, and ¹²¹In) were incorrect. The half-lives of ¹¹⁴In and ¹¹⁶In were first reported without a definite mass assignment. The discovery of ¹⁰⁵In was only published two years after submission of the article during which time ¹⁰⁵In was reported by other authors. The discovery of ¹³³In appeared in a refereed journal 15 years after it had been reported in a conference proceeding.

Acknowledgments

This work was supported by the National Science Foundation under grants No. PHY06-06007 (NSCL) and PHY07-54541 (REU).

REFERENCES

- 1. J.Q. Ginepro, J. Snyder, and M. Thoennessen, At. Data Nucl. Data Tables, in print (2009)
- 2. G. Audi, O. Bersillon, J. Blachot, and A.H. Wapstra, Nucl. Phys. A 729, 3 (2003)
- 3. ENSDF, Evaluated Nuclear Structure Data File, mainted by the National Nuclear Data Center at Brookhaven National Laboratory, published in Nuclear Data Sheets (Academic Press, Elsevier Science).
- 4. S. Goriely, M. Samyn, and J.M. Pearson, Phys. Rev. C 75, 64312 (2007)
- 5. M. Thoennessen, Rep. Prog. Phys. 67, 1187 (2004)
- 6. H.A. Grunder and F.B. Selph, Annu. Rev, Nucl. Sci., 27, 353 (1977)
- 7. R. Schneider, J. Friese, J. Reinhold, K. Zeitelhack, T. Faestermann, R. Gernhauser, H. Gilg, F. Heine, J. Homolka, P. Kienle, H.J. Korner, H. Geissel, G. Münzenberg, and K. Sümmerer, Z. Phys. A **348**, 241 (1994)
- 8. W. Kurcewicz, E.F. Zganjar, R. Kirchner, O. Klepper, E. Roeckl, P. Komninos, E. Nolte, D. Schardt, and P. Tidemand-Petersson, Z. Phys. A **308**, 21 (1982)

- 9. M. Huyse, P. del Marmol, E. Coenen, K. Deneffe, P. Van Duppen, and J. Vanhorenbeeck, Z. Phys. A **330**, 121 (1988)
- B. Beraud, J. Treherne, A. Charvet, R. Duffait, J. Genevey, A. Gizon, J. Gizon, and M. Meyer, Z. Phys. A 299, 279 (1981)
- 11. G. Lhersonneau, G. Dumont, K. Cornelis, M. Huyse, and J. Verplancke, Phys. Rev. C 18, 2688 (1978)
- 12. B.J. Varley, J.C. Cunnane, and W. Gelletly, J. Phys. G 3, 55 (1977)
- 13. T. Inamura, A. Hashizume, T. Katou, and Y. Tendow, J. Phys. Soc. Japan 30, 884 (1971)
- 14. J. Rivier, and R. Moret, Radiochim. Acta 22, 27 (1975)
- 15. R. Rougny, M. Meyer-Levy, R. Beraud, J. Rivier, and R. Moret, Phys. Rev. C 8, 2332 (1973)
- V.P. Burminskii, O.D. Kovrigin, Z.V. Nezgovorova, and G.I. Sychikov, Izvestiya Akademii Nauk SSSR. Seriya Fizicheskaya 38, 1562 (1974)
- 17. R.C. Catura, and J.R. Richardson, Phys. Rev. 126, 646 (1962)
- 18. E.C. Mallary, and M.L. Pool, Phys. Rev. 76, 1454 (1949)
- 19. S.N. Ghoshal, Phys. Rev. 73, 417 (1948)
- 20. S.W. Barnes, Phys. Rev. 56, 414 (1939)
- 21. D.J. Tendam, and H.L. Bradt, Phys. Rev. 72, 1118 (1947)
- 22. J.L. Lawson, and J.M. Cork, Phys. Rev. 52, 531 (1937)
- 23. J.M. Cork, and J.L. Lawson, Phys. Rev. 56, 291 (1939)
- 24. J.L. Lawson, and J.M. Cork, Phys. Rev. 57, 982 (1940)
- 25. M. Wehrli, Naturwiss. 22, 289 (1934)
- 26. M. Wehrli, Helv. Phys. Acta 7, 612 (1934)
- 27. W.Y. Chang, M. Goldhaber, and R. Sagane, Nature 139, 962 (1937)
- 28. M.K. Pool, J. M. Cork, and R.L. Thornton, Phys. Rev. 52, 239 (1937)
- 29. J.M. Cork, and R.L. Thornton, Phys. Rev. 51, 608 (1937)
- 30. F.W. Aston, Phil. Mag. 49, 1191 (1925)
- 31. E. Amaldi, O. D'Agostino, E. Fermi, B. Pontecorvo, F. Rasetti, and E. Sergre, Proc. Roy. Soc. (London) 149A, 522 (1935)
- 32. R.B. Duffield, and J.D. Knight, Phys. Rev. 75, 1967 (1949)
- 33. C.L. McGinnis, Phys. Rev. 109, 888 (1958)
- 34. H. Yuta, and H. Morinaga, Nucl. Phys. 16, 119 (1960)
- 35. N. Nussis, J. Pahissa, and R. Ricci, Z. Naturforsch. 12a, 520 (1957)

- 36. J. Kantele, and M. Karras, Phys. Rev. 129, 270 (1963)
- 37. M. Karras, Phys. Rev. 135, B1301 (1964)
- 38. K. Fritze, and K. Griffiths, Radiochimica Acta 7, 59 (1967)
- 39. B. Grapengiesser, E. Lund, and G. Rudstam, J. Inorg. Nucl. Chem. 36, 2409 (1974)
- 40. K. Aleklett, G. Nyman, and G. Rudstam, Nucl. Phys. A 246, 425 (1975)
- 41. A. Kerek, G.B. Holm, S. Borg, and P. Carle, Nucl. Phys. A 209, 520 (1973)
- 42. E. Lund, and G. Rudstam, Phys. Rev. C 13, 1544 (1976)
- 43. A. Kerek, G.B. Holm, L.-E. De Geer, and S. Borg, Phys. Lett. 44B, 252 (1973)
- 44. P. Hoff, P. Baumann, A. Huck, A. Knipper, G. Walter, G. Marguier, B. Fogelberg, A. Lindroth, H. Mach, M. Sanchez-Vega, R.B.E. Taylor, P. Van Duppen, A. Jokinen, M. Lindroos, M. Ramdhane, W. Kurcewicz, B. Jonson, G. Nyman, Y. Jading, K.-L. Kratz, A. Wohr, G. Lovhoiden, T.F. Thorsteinsen, J. Blomqvist, and ISOLDE Collaboration, Phys. Rev. Lett. 77, 1020 (1996)
- 45. 8] J. Blomqvist, in Proceedings of the 4th International Conference on Nuclei Far From Stability, Helsingör, 1981 (European Organization for Nuclear Research, Geneva, 1981) (CERN Geneva Report No. 81-09, 1981), p. 536.
- 46. I. Dillmann, M. Hannawald, U. Köster, V.N. Fedoseyev, A. Wohr, B. Pfeiffer, D. Fedorov, J. Shergur, L. Weissman, W.B. Walters, and K.-L.Kratz, Eur. Phys. J. A 13, 281 (2002)

EXPLANATION OF TABLE

TABLE I.Discovery of Indium Isotopes

Isotope Author	Indium isotope First author of refereed publication				
Journal	Journal of publication				
Ref.	Reference				
Method	Production method used in the discovery:				
	FE: fusion evaporation				
	LP: light-particle reactions (including neutrons)				
	NC: neutron capture				
	MS: mass spectroscopy				
	SP: spallation				
	PF: projectile fragmentation or fission				
	NF: neutron induced fission				
	PN: photo nuclear reactions				
Laboratory	Laboratory where the experiment was performed				
Country	Country of laboratory				
Year	Year of discovery				

TABLE I. Discovery of Indmium isotopes

See page 14 for Explanation of Tables

This space intentionally left blank

Isotope	Author	Journal	Ref.	Method	Laboratory	Country	Year
⁹⁸ In	R. Schneider	Z. Phys. A	Sch94	PF	Darmstadt	Germany	1994
⁹⁹ In	R. Schneider	Z. Phys. A	Sch94	PF	Darmstadt	Germany	1994
¹⁰⁰ In	W. Kurcewicz	Z. Phys. A	Kur82	FE	Darmstadt	Germany	1982
101 In	M. Huyse	Z. Phys. A	Huy88	FE	Louvain-la-Neuve	Belgium	1988
102 In	B. Beraud	Z. Phys. A	Ber81	FE	Grenoble	France	1981
¹⁰³ In	G. Lhersonneau	Phys. Rev. C	Lhe78	FE	Louvain-la-Neuve	Belgium	1978
¹⁰⁴ In	B.J. Varley	J. Phys. G	Var77	FE	Manchester	UK	1977
¹⁰⁵ In	J. Rivier	Radiochim. Acta	Riv75	LP	Grenoble	France	1975
¹⁰⁶ In	R.C. Catura	Phys. Rev.	Cat62	LP	UCLA	USA	1962
¹⁰⁷ In	E.C. Mallary	Phys. Rev.	Mal49	LP	Ohio State	USA	1949
¹⁰⁸ In	E.C. Mallary	Phys. Rev.	Mal49	LP	Ohio State	USA	1949
¹⁰⁹ In	S.N. Goshal	Phys. Rev.	Gho48	LP	Berkeley	USA	1948
¹¹⁰ In	S.W. Barnes	Phys. Rev.	Bar39	LP	Rochester	USA	1939
¹¹¹ In	D.J. Tendam	Phys. Rev.	Ten47	LP	Purdue	USA	1947
¹¹² In	D.J. Tendam	Phys. Rev.	Ten47	LP	Purdue	USA	1947
¹¹³ In	M. Wehrli	Naturwiss.	Weh34	MS	Basel	Switzerland	1934
¹¹⁴ In	J.L. Lawson	Phys. Rev.	Law37	LP	Michigan	USA	1937
¹¹⁵ In	F.W. Aston	Phil. Mag.	Ast25	MS	Cambridge	UK	1925
¹¹⁶ In	J.L. Lawson	Phys. Rev.	Law37	NC	Michigan	USA	1937
¹¹⁷ In	J.M. Cork	Phys. Rev.	Cor37	LP	Michigan	USA	1937
¹¹⁸ In	R.B. Duffield	Phys. Rev.	Duf49	PN	Illinois	USA	1949
¹¹⁹ In	R.B. Duffield	Phys. Rev.	Duf49	PN	Illinois	USA	1949
¹²⁰ In	C.L. McGinnis	Phys. Rev.	McG58	LP	NBS	USA	1958
¹²¹ In	H. Yuta	Nucl. Phys.	Yut60	PN	Tohoku	Japan	1960
¹²² In	J. Kantele	Phys. Rev.	Kan63	LP	Arkansas	USA	1963
¹²³ In	H. Yuta	Nucl. Phys.	Yut60	PN	Tohoku	Japan	1960
¹²⁴ In	M. Karras	Phys. Rev.	Kar64	LP	Arkansas	USA	1964
¹²⁵ In	K. Fritzke	Radiochim. Acta	Fri67	NF	McMaster	Canada	1967
¹²⁶ In	B. Grapengiesser	J. Inorg. Nucl. Chem.	Gra74	NF	Studsvik	Sweden	1974
¹²⁷ In	K. Aleklett	Nucl. Phys. A	Ale75	NF	Studsvik	Sweden	1975
¹²⁸ In	K. Aleklett	Nucl. Phys. A	Ale75	NF	Studsvik	Sweden	1975
¹²⁹ In	K. Aleklett	Nucl. Phys. A	Ale75	NF	Studsvik	Sweden	1975
¹³⁰ In	A. Kerek	Nucl. Phys. A	Ker73a	NF	Studsvik	Sweden	1973
¹³¹ In	E. Lund	Phys. Rev. C	Lun76	NF	Studsvik	Sweden	1976
¹³² In	A. Kerek	Phys. Lett. B	Ker73b	NF	Studsvik	Sweden	1973
¹³³ In	P. Hoff	Phys. Rev. Lett.	Hof96	SP	CERN	Switzerland	1996
¹³⁴ In	P. Hoff	Phys. Rev. Lett.	Hof96	SP	CERN	Switzerland	1996
¹³⁵ In	I. Dillmann	Eur. Phys. J. A	Dil02	SP	CERN	Switzerland	2002

REFERENCES FOR TABLE

- Ast25 F.W. Aston, Phil. Mag. 49, 1191 (1925)
- Ale75 K. Aleklett, G. Nyman, and G. Rudstam, Nucl. Phys. A 246, 425 (1975)
- Bar39 S.W. Barnes, Phys. Rev. 56, 414 (1939)
- Ber81 B. Beraud, J. Treherne, A. Charvet, R. Duffait, J. Genevey, A. Gizon, J. Gizon, and M. Meyer, Z. Phys. A 299, 279 (1981)
- Cat62 R.C. Catura, and J.R. Richardson, Phys. Rev. 126, 646 (1962)
- Cor37 J.M. Cork, and R.L. Thornton, Phys. Rev. 51, 608 (1937)
- Dillo2 I. Dillmann, M. Hannawald, U. Köster, V.N. Fedoseyev, A. Wohr, B. Pfeiffer, D. Fedorov, J. Shergur, L. Weissman, W.B. Walters, and K.-L.Kratz, Eur. Phys. J. A 13, 281 (2002)
- Duf49 R.B. Duffield, and J.D. Knight, Phys. Rev. 75, 1967 (1949)
- Fri67 K. Fritze, and K. Griffiths, Radiochimica Acta 7, 59 (1967)
- Gho48 S.N. Ghoshal, Phys. Rev. 73, 417 (1948)
- Gra74 B. Grapengiesser, E. Lund, and G. Rudstam, J. Inorg. Nucl. Chem. 36, 2409 (1974)
- Hof96 P. Hoff, P. Baumann, A. Huck, A. Knipper, G. Walter, G. Marguier, B. Fogelberg, A. Lindroth, H. Mach, M. Sanchez-Vega, R.B.E. Taylor, P. Van Duppen, A. Jokinen, M. Lindroos, M. Ramdhane, W. Kurcewicz, B. Jonson, G. Nyman, Y. Jading, K.-L. Kratz, A. Wohr, G. Lovhoiden, T.F. Thorsteinsen, J. Blomqvist, and ISOLDE Collaboration, Phys. Rev. Lett. 77, 1020 (1996)
- Huy88 M. Huyse, P. del Marmol, E. Coenen, K. Deneffe, P. Van Duppen, and J. Vanhorenbeeck, Z. Phys. A 330, 121 (1988)
- Kan63 J. Kantele, and M. Karras, Phys. Rev. **129**, 270 (1963)
- Kar64 M. Karras, Phys. Rev. **135**, B1301 (1964)
- Ker73a A. Kerek, G.B. Holm, S. Borg, and P. Carle, Nucl. Phys. A 209, 520 (1973)
- Ker73b A. Kerek, G.B. Holm, L.-E. De Geer, and S. Borg, Phys. Lett. 44B, 252 (1973)
- Kur82 W. Kurcewicz, E.F. Zganjar, R. Kirchner, O. Klepper, E. Roeckl, P. Komninos, E. Nolte, D. Schardt, and P. Tidemand-Petersson, Z. Phys. A **308**, 21 (1982)
- Law37 J.L. Lawson, and J.M. Cork, Phys. Rev. 52, 531 (1937)
- Lhe78 G. Lhersonneau, G. Dumont, K. Cornelis, M. Huyse, and J. Verplancke, Phys. Rev. C 18, 2688 (1978)
- Lun76 E. Lund, and G. Rudstam, Phys. Rev. C 13, 1544 (1976)
- Mal49 E.C. Mallary, and M.L. Pool, Phys. Rev. 76, 1454 (1949)
- McG58 C.L. McGinnis, Phys. Rev. 109, 888 (1958)

- Riv75 J. Rivier, and R. Moret, Radiochim. Acta 22, 27 (1975)
- Sch94 R. Schneider, J. Friese, J. Reinhold, K. Zeitelhack, T. Faestermann, R. Gernhauser, H. Gilg, F. Heine, J. Homolka, P. Kienle, H.J. Korner, H. Geissel, G. Münzenberg, and K. Sümmerer, Z. Phys. A 348, 241 (1994)
- Ten47 D.J. Tendam, and H.L. Bradt, Phys. Rev. 72, 1118 (1947)
- Var77 B.J. Varley, J.C. Cunnane, and W. Gelletly, J. Phys. G: Nucl. Phys. 3, 55 (1977)
- Weh34 M. Wehrli, Naturwiss. 22, 289 (1934)
- Yut60 H. Yuta, and H. Morinaga, Nucl. Phys. 16, 119 (1960)