Discovery of the Mercury Isotopes

D. MEIERFRANKENFELD and M. THOENNESSEN *

National Superconducting Cyclotron Laboratory and
Department of Physics and Astronomy, Michigan State University,
East Lansing, MI 48824, USA

Forty mercury isotopes have so far been observed; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

* Corresponding author.

Email address: thoennesen@nscl.msu.edu (M. Thoennessen).
1. INTRODUCTION

The discovery of the mercury isotopes is discussed as part of the series of the discovery of isotopes which began with the cerium isotopes in 2009 [1]. The purpose of this series is to document and summarize the discovery of the isotopes. Guidelines for assigning credit for discovery are (1) clear identification, either through decay-curves and relationships to other known isotopes, particle or γ-ray spectra, or unique mass and Z-identification, and (2) publication of the discovery in a refereed journal. The authors and year of the first publication, the laboratory where the isotopes were produced as well as the production and identification methods are discussed. When appropriate, references to conference proceedings, internal reports, and theses are included. When a discovery includes a half-life measurement the measured value is compared to the currently adopted value taken from the NUBASE evaluation [2] which is based on the ENSDF database [3].

2. DISCOVERY OF $^{171-210}$Hg

Forty mercury isotopes from $A = 171 - 210$ have been discovered so far; these include 7 stable, 26 proton-rich and 7 neutron-rich isotopes. According to the HFB-14 model [4], 268Hg should be the last bound neutron-rich nucleus (265Hg is predicted to be unbound). Along the proton dripline two more isotopes are predicted to be stable and it is estimated that seven additional nuclei beyond the proton dripline could live long enough to be observed [5]. Thus, there remain 66 isotopes to be discovered. Less than 40% of all possible mercury isotopes have been produced and identified so far.

Figure A summarizes the year of first discovery for all mercury isotopes identified by the method of discovery. The range of isotopes predicted to exist is indicated on the right side of the figure. The radioactive mercury isotopes were produced using fusion evaporation (FE), light-particle reactions (LP), neutron-capture (NC), spallation reactions (SP), projectile fragmentation or fission (PF), and α-decay.
FIG. A. Mercury isotopes as a function of time they were discovered. The different production methods are indicated. The solid black squares on the right hand side of the plot are isotopes predicted to be bound by the HFB-14 model. On the proton-rich side the light blue squares correspond to unbound isotopes predicted to have lifetimes larger than \(\sim 10^{-9} \) s. (AD). The stable isotopes were identified using mass spectroscopy (MS). Heavy ions are all nuclei with an atomic mass larger than \(A=4 \) [6]. Light particles also include neutrons produced by accelerators. In the following, the discovery of each mercury isotope is discussed in detail.

\(^{171}\text{Hg}\)

\(^{171}\text{Hg}\) was discovered by Kettunen et al. in 2004, and published in *Decay studies of \(^{170,171}\text{Au, 171–173 Hg, and 176 Tl}\)* [7]. The cyclotron of the Accelerator Laboratory of the University of Jyväskylä in Finland was used to produce the isotopes by the \(^{96}\text{Ru}(^{78}\text{Kr},3n)\) fusion evaporation reaction. The isotopes were separated by the gas-filled recoil separator RITU, and implanted into a position sensitive silicon strip detector. “A new \(\alpha\)-decaying isotope \(^{171}\text{Hg}\) and the previously known \(^{172}\text{Hg}\) isotope were produced via 3n- and 2n-fusion evaporation channels in the bombardment of the \(^{96}\text{Ru}\) target with the
The reported half-life of 53±16 µs is currently the only measurement.

172,173 Hg

The discovery by Seweryniak et al. of 172Hg and 173Hg was published in _Decay properties of the new isotopes_ 172Hg and 173Hg in 1999 [8]. The isotopes 172Hg and 173Hg were produced by the ATLAS superconducting linear accelerator at Argonne National Laboratory by the fusion evaporation reactions, 78Kr(96Ru,2n) and 80Kr(96Ru,3n), respectively. To identify the mass, the isotopes were separated using the Argonne Fragment Mass Analyzer. Three strong lines “are also present in decays followed within 100 ms by α particles corresponding to the decay of 168Pt (Eα ≈6.83 MeV), and thus are assigned to the decay of the previously unknown isotope 172Hg.” The observation of α-radiation populating 169Pt “leads to an unambiguous assignment of this group to the decay of a new isotope 173Hg.” The 0.25±0.35 ms measured half-life of 172Hg agrees with the adopted value of 0.29±0.23 ms, while the 173Hg half-life of 0.9±0.6 ms corresponds to the only measurement at the present time.

174 Hg

Uusitalo et al. published the discovery of 174Hg in _Alpha decay of the new isotope_ 174Hg [9] in 1997. 174Hg was produced in the fusion-evaporation reaction 144Sm(36Ar,6n) with beam energy between 180 and 230 MeV at the University of Jyväskylä in Finland. The isotopes were separated by the gas-filled recoil separator RITU, and implanted into a position sensitive silicon strip detector. “The measured decay properties of the daughter activity are compatible with those of 170Pt for which T1/2 = 6±5 ms and Eα = 6545±8 keV were reported. The mother activity can then be assigned to the new mercury isotope 174Hg.” The reported half-life of 2.1±1.8 ms is currently the only measurement.

175,176 Hg

Alpha Decay of New Neutron Deficient Gold, Mercury and Thallium Isotopes reported the discovery of 175Hg and 176Hg by Schneider et al. in 1983 at the Gesellschaft für Schwerionenforschung (GSI) in Germany [10]. The isotopes were produced in fusion-evaporation reactions of a 92Mo beam with energies between 4.5 A·MeV and 5.4 A·MeV and separated with the velocity filter SHIP. “The decays of the new isotopes 173Au, 175,176Hg and 179Tl could be correlated to the known α-decays of their daughters”. The half-life of 175Hg was measured to be 20±40−13 ms, while the half life of 176Hg was measured to be 34±18 ms. Both half-lives are close to the adopted values of 10.8(4) ms and 20.3(14) ms for 175Hg and 176Hg, respectively.

177 Hg

177Hg was first observed in 1975 in _Mise en évidence d’un nouvel isotope de mercure de masse 177_ by Cabot et al. [11]. A neodymium target was bombarded by a beam of calcium ions from the ALICE accelerator at Orsay, and the isotope was created by the reaction 142Nd(40Ca,5n)177Hg. “L’identification de 177Hg nous parait donc bien tablie” (The identification of 177Hg seems to us well established). No half-life measurement was made.
In 1971 Hansen et al. discovered ^{178}Hg in The Alpha Decay of ^{179}Hg and ^{178}Hg [12]. A lead target was bombarded with 600 MeV protons by the synchrocyclotron at CERN. ^{178}Hg was separated and identified with the the isotope-separator-on-line facility ISOLDE by measuring α energies and half-lives. “The assignment of the 6425 keV line to ^{178}Hg cannot be doubted since all conceivable contaminants have lower alpha energies.” The measured half-life of 0.47(14) s agrees with the currently adopted value of 0.266(25) s.

$^{179,180}\text{Hg}$

^{179}Hg and ^{180}Hg were discovered by Hansen et al. in 1970 and reported in Studies of the α-active isotopes of mercury, gold and platinum [13]. A lead target was bombarded with 600 MeV protons by the synchrocyclotron at CERN and ^{179}Hg and ^{180}Hg were separated and identified with the the isotope-separator-on-line facility ISOLDE. “The α-decay energy for ^{180}Hg is 6.118 MeV; $T_{1/2}$ was found to be 2.9±0.3 sec... The line at 6.270 MeV, containing altogether 19 counts, is from ^{179}Hg. The assignment is certain, because the energy is higher than any other observed in connection with the study of the mercury isotope.” The measured half-life of 2.9(3) s for ^{180}Hg agrees with the currently adopted value of 2.58(1) s. The half-life of ^{179}Hg was not determined.

^{181}Hg

Hansen et al. reported the first observation of ^{181}Hg in the paper Decay Characteristics of Short-Lived Radio-Nuclides Studied by On-Line Isotope Separator Techniques in 1969 [14]. 600 MeV protons from the CERN synchrocyclotron bombarded a lead target and ^{181}Hg was separated using the ISOLDE facility. The paper summarized the ISOLDE program and did not contain details about the individual nuclei other than in tabular form. The detailed analysis was published in reference [13]. The measured half-life of 3.6(3) s was misprinted as 3.6(3) m in [14] and corrected in an errata. This value agrees with the adopted value of 3.6(1) s.

^{182}Hg

^{182}Hg was discovered by Demin in 1968 et al. in New Mercury Isotopes [15]. ^{182}Hg was produced by the fusion-evaporation reactions $^{147}\text{Sm} + ^{40}\text{Ar}$ and $^{170}\text{Yb} + ^{20}\text{Ne}$ at the homogeneous magnetic-field cyclotron of the Laboratory for Nuclear Reactions in Dubna, Russia. The alpha radiation was then analyzed by a semiconductor spectrometer. “The ^{182}Hg assignment is confirmed also by the fact that the decay curve of ^{178}Pt in the appropriate part of the excitation function shows a slight activation in accordance with the half-life of ^{182}Hg.” The measured half life of 9.6(2) s is close to the adopted value of 10.83(6) s.

$^{183,184}\text{Hg}$

Hansen et al. reported the first observations of ^{183}Hg and ^{184}Hg in the paper Decay Characteristics of Short-Lived Radio-Nuclides Studied by On-Line Isotope Separator Techniques in 1969 [14]. 600 MeV protons from the CERN synchrocyclotron bombarded a lead target and ^{183}Hg and ^{184}Hg were
separated using the ISOLDE facility. The paper summarized the ISOLDE program and did not contain details about the individual nuclei other than in tabular form. The detailed analysis was published in reference [13]. The measured half-lives of 8.8(5) s for 183Hg and 32.0(10) s for 184Hg agree with the adopted values of 9.4(7) s for 183Hg and 30.9(3) s for 184Hg. The previously reported half-life for 183Hg of approximately 26 s [15] was misidentified and may have been from the decay of 184Hg.

185−187Hg

185Hg, 186Hg and 187Hg were first observed by Albouy et al. in 1960: *Nouveaux isotopes de période courte obtenus par spallation de l’or* [16]. Gold targets were bombarded with 155 MeV protons from the Orsay synchro-cyclotron and the isotopes were produced in spallation reactions. Half-life and γ-ray measurements were performed following double magnetic separation. “Les isotopes de mass 187, 186 et 185, de période courte, ont pu être observés grâce au montage d’un scintillateur à l’intérieur du séparateur, derrière le collecteur du 2e étage.” (The short-lived isotopes of mass 187, 186, and 185 could be observed thanks to a scintillator mounted inside the separator after the collector of the second stage.) The measured half-lives of 50 s (185Hg), 1.5 m (186Hg) and 3 m (187Hg) are consistent with the adopted values of 49.1(10) s, 1.38(6) min, and 2.4(3) min, respectively.

188Hg

N. Poffe et al. reported the first observation of 188Hg in *Réactions (p,xn) induites dans l’or par des protons de 155 MeV* in 1960 [17]. Gold targets were bombarded with 155 MeV protons from the synchrocyclotron of the Paris Faculty of Sciences and 188Hg was identified by half-life and γ-ray measurements following magnetic separation: “Half-lives and main γ-ray energies have been measured for 190Hg, 189Hg, 188Hg and their daughter products.” The quoted half-life of 3.7 m is close to the currently accepted value of 3.25(3) min.

189Hg

Smith and Hollander first observed 189Hg in 1955 and the results were reported in *Radiochemical Study of Neutron-Deficient Chains in the Noble Metal Region* [18]. A gold target was bombarded with a beam of 120 MeV protons accelerated with the Berkeley 184-cyclotron producing 189Hg in (p,9n) reactions. Identification was achieved by timed chemical separation of the 189Au daughter nuclei. “The experiments cited here which establish the 42-minute gold as Au189 therefore also set the half-life of Hg189 as approximately 20 minutes.” This 20(10) m half-life is consistent with the present value of 7.6(1) m for the ground state or the 8.6(1) m isomeric state.

190Hg

G. Albouy et al. observed 190Hg for the first time in 1959: *Isotopes de nombre de masse 190 du mercure et de l’or* [19]. Mercury isotopes were produced in (p,xn) spallation reactions at the Orsay synchrocyclotron and mass 190 was selected with an isotope separator. K-X-rays were detected with a NaI(Tl) detector. “Nous avons observé dans la décroissance du rayonnement K principalement deux périodes en filiation 21±2 mn suivie de 45±3 mn. Nous attribuons ces périodes respectivement à 190Hg et à son descendant 190Au.” (We observed the decay by K-radiation to consist mainly of two correlated
periods, 21 ± 2 m followed by 45 ± 3 m. We attributed these periods with ^{190}Hg and its daughter ^{190}Au, respectively.) The half-life for ^{190}Hg agrees with the accepted value of $20.0(5)$ m.

^{191}Hg

^{191}Hg was first identified by Gillon et al. from Princeton University in *Nuclear Spectroscopy of Neutron-Deficient Hg Isotopes* in 1954 [20]. The experiment was performed at the Harvard Cyclotron Laboratory using the reaction $^{197}\text{Au(p,7n)}$ at 65 MeV. Conversion electron spectra were measured with a 119-gauss magnet and K-X-ray lines were attributed to ^{191}Au following the decay of ^{191}Hg. “A set of lines decaying with half life 57(5) min was observed” This half-life agrees with the 49(10) m half-life of the ground-state as well as with the 50.8(15) m half-life of the isomeric state.

$^{192,193}\text{Hg}$

The discovery of ^{192}Hg and ^{193}Hg was published in 1952 by Fink et al. in *Neutron-deficient Mercury Isotopes* [21]. The Rochester cyclotron was used to bombard gold with 55, 65, and 96 MeV protons. ^{192}Hg was identified by the activity from the ^{192}Au daughter. “With protons of 60 to 96 mev. on 0.003 inch gold foil in the Rochester cyclotron, a new mercury activity of half-life 5.7 \pm 0.5 hours is observed.” For ^{193}Hg, “the requisite quantitative relationship between 10-hour mercury and 15.3 hour Au193 daughter has been demonstrated.” The half-life of ^{192}Hg is consistent with the adopted value of 4.85(20) hours, while the 10.0(5) hour measured half-life of ^{193}Hg most probably corresponds to the 11.8(2) hour isomeric state.

^{194}Hg

^{194}Hg was first observed in 1973 by Orth et al. in *Half-life Measurements on ^{172}Hf and ^{194}Hg* [22]. The isotope was produced by bombarding a lead target with 600 MeV protons in the circulating beam of the synchrocyclotron at the Space Radiation Effects Laboratory at Newport News, Virginia. Four months after the bombardment, ^{194}Hg was radiochemically separated and isolated for a half-life analysis: “A comparison of the disintegration rate and expected spallation yield of ^{194}Hg with those of ^{195}Au from Pb indicates limits of $90 \text{y} < t_{1/2} < 540 \text{y}$ for ^{194}Hg.” This agrees with the adopted half-life of 444(77) y. A previous incorrect half-life measurement of $\approx 1 \text{ y}$ may have been do to volatilization losses from the sample [23].

^{195}Hg

The discovery of ^{195}Hg was published by Fink et al. in 1952 in *Neutron-deficient Mercury Isotopes* [21]. The Berkeley 184-inch cyclotron was used to bombard gold with 30 to 60 MeV protons. Half-life measurements were performed following chemical separation: “A 31-hour activity from 30 mev. proton bombardment of gold is assigned to Hg195. “ This half-life is most probably a measurement of the 41.6(3) h isomeric state.
Aston first identified ^{196}Hg in *Photometry of Mass-Spectra* in 1930 [24]. The isotope was discovered by taking a mass-spectrograph of naturally occurring mercury. “The rough value for the very faint isotope 196 was obtained as in the case of xenon by contour plotting from a very long exposure.”

^{197}Hg was first identified in 1941 by Sherr *et al.* in *Transmutation of Mercury by Fast Neutrons* [25]. A mercury target was bombarded with fast neutrons from the Li + d reaction. The deuterons were produced by the Harvard cyclotron. Referring to a private communication by G.E. Valley the paper states: “The assignment of the 25-hour period to Hg197 is consistent with the present investigations.” This half-life agrees with the adopted value of 23.8(1) h. Previously a \sim 45-m half-life first observed by Heyn [26] was incorrectly assigned to ^{197}Hg [27].

The stable isotopes $^{198-201}\text{Hg}$ were discovered by Aston in 1925 published in *The Isotopes of Mercury* [28]. A new mass spectrograph with twice the dispersion of the previous one made the identification of the mercury isotopes possible. “Preliminary photographs of the mass-spectra of mercury show its lines clearly resolved and so enable a definite statement to be made on the mass numbers of its most important constituents.”

In 1920 Aston reported the discovery of the stable isotope ^{202}Hg in *The Constitution of the Elements* [29]. Aston used a mass spectrograph to identify two isotopes of mercury: “Further examination of the multiply charged mercury clusters indicate the probability of a strong line at 202, a weak component at 204.” Aston published the actual spectra a few months later [30].

^{203}Hg was first identified by Friedlander *et al.* in 1943 in *Radioactive Isotopes of Mercury* [31]. The isotope was formed by irradiating stable mercury isotopes with neutrons produced by the bombardment of lithium with 14 MeV deuterons from the 60-inch cyclotron at the University of California, Berkeley. “Since both slow and fast neutrons produce the activity, the best assignment is Hg203 which can be produced by $n-\gamma$ reaction from Hg202, and by $n-2n$ reaction from Hg204.” The half-life of 51.5(15) d is consistent with the adopted value of 46.594(12) d. In 1937 a \sim45 m half-life had been incorrectly assigned to ^{203}Hg [32]. A half-life of \sim50 d had been previously observed, but no mass assignment was made [25].

In 1920 Aston reported the discovery of the stable isotope ^{204}Hg in *The Constitution of the Elements* [29]. Aston used a mass spectrograph to identify two isotopes of mercury: “Further examination of the
multiply charged mercury clusters indicate the probability of a strong line at 202, a weak component at 204.” Aston published the actual spectra a few months later [30].

^{205}Hg

^{205}Hg was discovered by Krishnan et al. in 1940 and published in *Deuteron Bombardment of the Heavy Elements* [33]. Mercury was bombarded with 9 MeV deuteron beams from the Cavendish cyclotron. Resulting beta radiation “has been assigned to Hg205 decaying to Tl205 by the emission of continuous β-rays.” The measured half-life of 5.5(2) m agrees with the adopted value of 5.14(9) m. Previously a half-life measurement of 40 h half-life was incorrectly assigned to ^{205}Hg [34].

^{206}Hg

^{206}Hg was discovered by Nurmia et al. in 1961 and published in *Mercury-206: a New Natural Radionuclide* [35]. The isotope was formed by the alpha decay of ^{210}Pb at the Institute of Physics of the University of Helsinki, Finland. Beta-decay curves were recorded following chemical separation. “The hitherto unknown mercury-206 is formed from lead-210 by alpha decay.” The measured half-life of 7.5(10) min agrees with the adopted value of 8.32(7) min.

^{207}Hg

Mirzadeh et al. discovered ^{207}Hg in 1982 in *A Rapid Radiochemical Separation Procedure for Mercury from Lead and Bismuth Targets* [36]. The isotope was formed by bombarding lead and bismuth with 30-160 MeV neutrons from the Brookhaven Medium Energy Intense Neutron facility. Gamma-ray spectra were measured following chemical separation. “As part of the systematic studies of fast neutron cross sections for targets over the entire periodic table, we have produced $^{205−207}\text{Hg}$ by $^{208}\text{Pb}/\text{n},2\text{pxn}/$ and $^{209}\text{Bi}/\text{n},3\text{pxn}/$ reactions.” No half life measurement was made. Mirzadeh et al. mentions a previously measured half-life without a reference. It is interesting to note that presently the only measured half-life was only published in a 1981 conference proceedings [37].

^{208}Hg

^{208}Hg was discovered by Zhang et al. in 1994 in *Observation of the new neutron-rich nuclide ^{208}Hg* [38]. A lead target was bombarded by a 30 MeV/nucleon ^{12}C beam from the Heavy Ion Research Facility Lanzhou at the Institute of Modern Physics, Lanzhou, China. “The assignment of ^{208}Hg was based on the identification of its $\beta^−$ decay daughter ^{208}Tl observed in the periodically extracted Tl element sample growing in the separated Hg element product solution.” The measured half-life of $42^{+23}_{−12}$ m agrees with the adopted value of $41^{+5}_{−4}$ m.
In 1998 Zhang et al. reported the discovery of 209Hg in *Neutron-rich heavy residues and exotic multinucleon transfer* [39]. A lead target was bombarded by a 50 MeV/nucleon 18O beam from the Heavy Ion Research Facility at the Institute of Modern Physics in Lanzhou, China. The isotopes were separated online with a gas-thermochromatographic device and γ-β coincidences were recorded. "209Hg was created through an exotic $-2p3n$ multinucleon transfer process and was identified for the first time." The half-life value of 35^{+9}_{-6} s is currently the only measurement. It should be noted that Zhang submitted the results simultaneously to a separate journal [40].

210Hg was produced by Pfützner et al. in 1998 in *New isotopes and isomers produced by the fragmentation of 238U at 1000 MeV/nucleon* [41]. Projectile fragmentation was used to produce the isotope by bombarding a beryllium target with a 1000 MeV/nucleon 238U beam from the SIS/FRS facility at GSI in Darmstadt, Germany. "Although only five counts represent the experimental evidence for the observation of 210Hg, the very small number of background events on the identification plots supports the adopted assignment."

3. SUMMARY

The discoveries of the known mercury isotopes have been compiled and the methods of their production discussed. The identification of the odd mercury isotopes between mass 183 and 205 proved to be especially difficult. 183Hg, 197Hg, 203Hg, and 205Hg, were initially incorrectly identified. The half-life of 203Hg had been observed previously but without a mass assignment. For 189Hg and 191Hg it could not be determined if the ground state or an isomeric state was observed, while for 193Hg and 195Hg the isomeric state was most likely observed first. The half-life measurement of 194Hg was initially reported incorrect. It is interesting to note that the half-life of 207Hg had been reported in a 1981 conference proceedings and even after over 25 years has not been published in a refereed journal. Finally, the discovery of 209Hg was reported by the authors simultaneously in two different journals.

Acknowledgments

This work was supported by the National Science Foundation under grants No. PHY06-06007 (NSCL).
REFERENCES

21. R. Fink and E.O. Wiig, J. Am. Chem. Soc. 74, 2457 (1952)
26. F.A. Heyn, Nature 139, 842 (1937)
27. L.W. Alvarez, Phys. Rev. 54, 486 (1938)
29. F.W. Aston, Nature 105, 8 (1920)
30. F.W. Aston, Nature 105, 617 (1920)
32. E. McMillan, M. Kamen, and S. Ruben, Phys. Rev. 52, 375 (1937)
34. E.B. Andersen, Nature 137, 457 (1936)
EXPLANATION OF TABLE

TABLE I. Discovery of Mercury Isotopes

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Mercury isotope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author</td>
<td>First author of refereed publication</td>
</tr>
<tr>
<td>Journal</td>
<td>Journal of publication</td>
</tr>
<tr>
<td>Ref.</td>
<td>Reference</td>
</tr>
<tr>
<td>Method</td>
<td>Production method used in the discovery:</td>
</tr>
<tr>
<td></td>
<td>FE: fusion evaporation</td>
</tr>
<tr>
<td></td>
<td>LP: light-particle reactions (including neutrons)</td>
</tr>
<tr>
<td></td>
<td>MS: mass spectroscopy</td>
</tr>
<tr>
<td></td>
<td>SP: spallation</td>
</tr>
<tr>
<td></td>
<td>AD: alpha decay</td>
</tr>
<tr>
<td></td>
<td>PF: projectile fragmentation</td>
</tr>
<tr>
<td></td>
<td>NC: neutron-capture reactions</td>
</tr>
<tr>
<td>Laboratory</td>
<td>Laboratory where the experiment was performed</td>
</tr>
<tr>
<td>Country</td>
<td>Country of laboratory</td>
</tr>
<tr>
<td>Year</td>
<td>Year of discovery</td>
</tr>
</tbody>
</table>
TABLE I. Discovery of Mercury isotopes

See page 13 for Explanation of Tables

This space intentionally left blank
<table>
<thead>
<tr>
<th>Isotope</th>
<th>Author</th>
<th>Journal</th>
<th>Ref.</th>
<th>Method</th>
<th>Laboratory</th>
<th>Country</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>171Hg</td>
<td>H. Kettunen</td>
<td>Phys. Rev. C</td>
<td>Ket04</td>
<td>FE</td>
<td>Jyvaskyla</td>
<td>Finland</td>
<td>2004</td>
</tr>
<tr>
<td>172Hg</td>
<td>D. Seweryniak</td>
<td>Phys. Rev. C</td>
<td>Sew99</td>
<td>FE</td>
<td>Argonne</td>
<td>USA</td>
<td>1999</td>
</tr>
<tr>
<td>173Hg</td>
<td>D. Seweryniak</td>
<td>Phys. Rev. C</td>
<td>Sew99</td>
<td>FE</td>
<td>Argonne</td>
<td>USA</td>
<td>1999</td>
</tr>
<tr>
<td>174Hg</td>
<td>J. Uusitalo</td>
<td>Z. Phys. A</td>
<td>Uus97</td>
<td>FE</td>
<td>Jyvaskyla</td>
<td>Finland</td>
<td>1997</td>
</tr>
<tr>
<td>175Hg</td>
<td>J.R.H. Schneider</td>
<td>Z. Phys. A</td>
<td>Sch83</td>
<td>FE</td>
<td>Darmstadt</td>
<td>Germany</td>
<td>1983</td>
</tr>
<tr>
<td>176Hg</td>
<td>J.R.H. Schneider</td>
<td>Z. Phys. A</td>
<td>Sch83</td>
<td>FE</td>
<td>Darmstadt</td>
<td>Germany</td>
<td>1983</td>
</tr>
<tr>
<td>177Hg</td>
<td>C. Cabot</td>
<td>Compt. Rend. Acad. Sci.</td>
<td>Cab75</td>
<td>FE</td>
<td>Orsay</td>
<td>France</td>
<td>1975</td>
</tr>
<tr>
<td>178Hg</td>
<td>P.G. Hansen</td>
<td>Nucl. Phys. A</td>
<td>Han70</td>
<td>SP</td>
<td>CERN</td>
<td>Switzerland</td>
<td>1970</td>
</tr>
<tr>
<td>179Hg</td>
<td>P.G. Hansen</td>
<td>Nucl. Phys. A</td>
<td>Han70</td>
<td>SP</td>
<td>CERN</td>
<td>Switzerland</td>
<td>1970</td>
</tr>
<tr>
<td>180Hg</td>
<td>P.G. Hansen</td>
<td>Nucl. Phys. A</td>
<td>Han69</td>
<td>SP</td>
<td>CERN</td>
<td>Switzerland</td>
<td>1969</td>
</tr>
<tr>
<td>181Hg</td>
<td>A.G. Demin</td>
<td>Nucl. Phys. A</td>
<td>Dem68</td>
<td>FE</td>
<td>Dubna</td>
<td>Russia</td>
<td>1968</td>
</tr>
<tr>
<td>182Hg</td>
<td>P.G. Hansen</td>
<td>Phys. Lett. B</td>
<td>Han69</td>
<td>SP</td>
<td>CERN</td>
<td>Switzerland</td>
<td>1969</td>
</tr>
<tr>
<td>183Hg</td>
<td>P.G. Hansen</td>
<td>Phys. Lett. B</td>
<td>Han69</td>
<td>SP</td>
<td>CERN</td>
<td>Switzerland</td>
<td>1969</td>
</tr>
<tr>
<td>184Hg</td>
<td>G. Albouy</td>
<td>J. Phys. Radium</td>
<td>Alb60</td>
<td>SP</td>
<td>Orsay</td>
<td>France</td>
<td>1960</td>
</tr>
<tr>
<td>185Hg</td>
<td>G. Albouy</td>
<td>J. Phys. Radium</td>
<td>Alb60</td>
<td>SP</td>
<td>Orsay</td>
<td>France</td>
<td>1960</td>
</tr>
<tr>
<td>186Hg</td>
<td>G. Albouy</td>
<td>J. Phys. Radium</td>
<td>Alb60</td>
<td>SP</td>
<td>Orsay</td>
<td>France</td>
<td>1960</td>
</tr>
<tr>
<td>187Hg</td>
<td>N. Poffe</td>
<td>J. Phys. Radium</td>
<td>Pof60</td>
<td>SP</td>
<td>Orsay</td>
<td>France</td>
<td>1960</td>
</tr>
<tr>
<td>188Hg</td>
<td>W.G. Smith</td>
<td>Phys. Rev.</td>
<td>Smi55</td>
<td>LP</td>
<td>Berkeley</td>
<td>USA</td>
<td>1955</td>
</tr>
<tr>
<td>189Hg</td>
<td>G. Albouy</td>
<td>Compt. Rend. Acad. Sci.</td>
<td>Alb59</td>
<td>SP</td>
<td>Orsay</td>
<td>France</td>
<td>1959</td>
</tr>
<tr>
<td>190Hg</td>
<td>L.P. Gillon</td>
<td>Phys. Rev.</td>
<td>Gil54</td>
<td>LP</td>
<td>Harvard</td>
<td>USA</td>
<td>1954</td>
</tr>
<tr>
<td>191Hg</td>
<td>R.W. Fink</td>
<td>J. Am. Chem. Soc.</td>
<td>Fin52</td>
<td>LP</td>
<td>Rochester</td>
<td>USA</td>
<td>1952</td>
</tr>
<tr>
<td>192Hg</td>
<td>R.W. Fink</td>
<td>J. Am. Chem. Soc.</td>
<td>Fin52</td>
<td>LP</td>
<td>Rochester</td>
<td>USA</td>
<td>1952</td>
</tr>
<tr>
<td>194Hg</td>
<td>R.W. Fink</td>
<td>J. Am. Chem. Soc.</td>
<td>Fin52</td>
<td>LP</td>
<td>Rochester</td>
<td>USA</td>
<td>1952</td>
</tr>
<tr>
<td>196Hg</td>
<td>R. Sherr</td>
<td>Phys. Rev.</td>
<td>She41</td>
<td>LP</td>
<td>Harvard</td>
<td>USA</td>
<td>1941</td>
</tr>
<tr>
<td>197Hg</td>
<td>F.W. Aston</td>
<td>Nature</td>
<td>Ast25</td>
<td>MS</td>
<td>Cambridge</td>
<td>UK</td>
<td>1925</td>
</tr>
<tr>
<td>198Hg</td>
<td>F.W. Aston</td>
<td>Nature</td>
<td>Ast25</td>
<td>MS</td>
<td>Cambridge</td>
<td>UK</td>
<td>1925</td>
</tr>
<tr>
<td>199Hg</td>
<td>F.W. Aston</td>
<td>Nature</td>
<td>Ast25</td>
<td>MS</td>
<td>Cambridge</td>
<td>UK</td>
<td>1925</td>
</tr>
<tr>
<td>200Hg</td>
<td>F.W. Aston</td>
<td>Nature</td>
<td>Ast25</td>
<td>MS</td>
<td>Cambridge</td>
<td>UK</td>
<td>1925</td>
</tr>
<tr>
<td>201Hg</td>
<td>F.W. Aston</td>
<td>Nature</td>
<td>Ast20</td>
<td>MS</td>
<td>Cambridge</td>
<td>UK</td>
<td>1920</td>
</tr>
<tr>
<td>202Hg</td>
<td>F.W. Aston</td>
<td>Nature</td>
<td>Ast20</td>
<td>MS</td>
<td>Cambridge</td>
<td>UK</td>
<td>1920</td>
</tr>
<tr>
<td>203Hg</td>
<td>G. Friedlander</td>
<td>Phys. Rev.</td>
<td>Fri43</td>
<td>NC</td>
<td>Berkeley</td>
<td>USA</td>
<td>1943</td>
</tr>
<tr>
<td>204Hg</td>
<td>F.W. Aston</td>
<td>Nature</td>
<td>Ast20</td>
<td>MS</td>
<td>Cambridge</td>
<td>UK</td>
<td>1920</td>
</tr>
<tr>
<td>206Hg</td>
<td>M. Nurmia</td>
<td>Nature</td>
<td>Nur61</td>
<td>AD</td>
<td>Helsinki</td>
<td>Finland</td>
<td>1961</td>
</tr>
<tr>
<td>207Hg</td>
<td>S. Mirzadeh</td>
<td>Radiochem. Radioanal. Lett.</td>
<td>Mir82</td>
<td>LP</td>
<td>Brookhaven</td>
<td>USA</td>
<td>1982</td>
</tr>
</tbody>
</table>
REFERENCES FOR TABLE

Ast20 F.W. Aston, Nature 105, 8 (1920)

Fin52 R. Fink and E.O. Wiig, J. Am. Chem. Soc. 74, 2457 (1952)

Fri43 G. Friedlander, and C. Wu, Phys. Rev. 63, 227 (1943)

Gil54 L.P. Gillon, K. Gopalakrishnan, and A. de-Shalit, Phys. Rev. 93, 124 (1954)

