²⁶³Hs

 263 Hs was discovered by Dragojević et al. in 2009 as described in "New isotope 263 Hs [1]. A 280 MeV 56 Fe beam from the Berkeley 88-in. cyclotron bombarded an enriched 208 Pb target and 263 Hs was formed in the (1n) fusion-evaporation reaction. Recoil products were separated with the Berkeley gas-filled separator (BGS) and implanted into a Si-strip focal plane detector array which also recorded the subsequent α-decay and spontaneous fission. " 263 Hs was identified by observing an 'EVR-like event' followed by a ' 263 Hs-like event' within 10 ms, and then by (i) at least two of the 259 Sg, 255 Rf, and 251 No daughters... within 15 s, or (ii) SF (E > 90 MeV), within 10 s." Six decay chains from 263 Hs were observed. In 1984 Oganessian et al. reported evidence for the formation of 263 Hs by identifying the decay of daughter nuclei, however, no direct evidence for the observation of 263 Hs was measured [2].

- [1] I. Dragojevic et al., Phys. Rev. C 79 (2009) 011602.
- [2] Yu. Ts. Oganessian et al., Z. Phys. A 319 (1984) 215.

Adapted from M. Thoennessen, At. Data Nucl. Data Tables 99 (2013) 312