Halflife measurements of the rp-process nuclei 61Ga, 63Ge, and 65As

J.A. Winger a, D.P. Bazin a,1, W. Benenson a,b, G.M. Crawley a,b, D.J. Morrissey a,c, N.A. Orr a, R. Pfaff a,b, B.M. Sherrill a,b, M. Steiner a,b, M. Thoennessen a,b, S.J. Yennello a and B.M. Young a,b

a National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI, 48824-1321, USA
b Department of Physics and Astronomy, Michigan State University, East Lansing, MI, 48824-1321, USA
c Department of Chemistry, Michigan State University, East Lansing, MI, 48824-1321, USA

Received 7 October 1992

Using the A1200 beam analysis device at the National Superconducting Cyclotron Laboratory, we have measured the halflives of several nuclei along the rp-process path near the proton-drip line. Halflife results for 61Ga, 63Ge, and 65As (0.15 ± 0.03 s, 95 ± 23 ms, and 0.19 ± 0.01 s, respectively) and their implications for the rp-process are presented.

A great deal of interest has been shown in proton-drip line nuclei in the $60<A<100$ mass range, in part due to their role in determining the astrophysical rapid proton capture (rp-) process path [1]. By measuring the halflives and binding energies of these nuclei, the path and extent of the process can be determined. Certain of these nuclei, 65As and 69Br, are particularly important since they are candidates for the rp-process termination point [2-6]. If these nuclei are stable to proton emission, then the rp-process, illustrated for this region in fig. 1, will proceed through them by proton capture followed by proton capture or beta decay. However, if they proton decay, the process will terminate, or at least be greatly hindered, due to the long halflife (>60 s) of their proton-capture precursor relative to the expected time scale (~ 10 s) of the rp-process. This occurs because the slow beta-decay rate for the proton-capture precursor (64Ge or 68Se) does not provide sufficient daughter nuclei (64Ga or 68As) to be processed by proton capture, a fast process, to higher mass nuclei. Since various mass predictions [7] disagree on whether these nuclei are bound, experiments are necessary to determine their primary decay modes. A number of experiments have attempted to measure ground-state proton decay for 65As and 69Br [5,9,10], but each gave no result. The recent observation of six new nuclei, including 65As and 69Br, by Mohar et al. [6] did not require them to be proton bound, but only required the halflife to be on the order of the flight time of the ion through the experimental system. In the present experiment, we were able to produce, identify, and measure the beta-decay halflife of 65As as well as those of 61Ga and 63Ge.

Radioactive isotopes were produced by fragment-
ing an $E/A = 75$ MeV 78Kr beam by an enriched 58Ni target (~ 105 mg/cm2) with a 3 mg/cm2 aluminum backing to provide a higher percentage of fully stripped ions. Fragments within $\pm 1.5\%$ of the peak momentum for the $Z \approx 30$, $T_z = -\frac{1}{2}$ nuclei were selected in the first half of the A1200 using the high acceptance mode [11]. A curved plastic achronmatic degrader wedge [12] (C_9H_{10}, ~ 100 mg/cm2), placed at the second dispersive image, reduced the number of different isotopes arriving at the A1200 focal plane from more than 150 to less than 30. Four settings for the second half of the A1200 were used successively to implant 61Ga, 62Ga, 63Ge, and 65As fragments into a Si detector telescope placed at the A1200 focal plane which was surrounded by a segmented plastic scintillator beta detector. Two position-sensitive parallel plate avalanche counters, one placed 37 cm upstream and one 5 cm downstream of the achronmatic degrader wedge at the second dispersive image, coupled with NMR measurements of the dipole fields provided a measure of the rigidity of each ion. Two thin plastic scintillators (~ 10 mg/cm2) separated by ~ 14 m provided a measure of the time-of-flight (TOF).

The Si detector telescope consisted for four detectors: ΔE_1 and ΔE_2, which provided redundant Z identification; E_v, in which the ions were stopped and in which decay protons could be observed; and E_s, which was used to reject any ions not stopping in E_v. These detectors were calibrated with the primary beam as well as a range of known fragments from $Z=14$ to 36. Variation due to the large momentum acceptance of the system required the energy losses, total energy, and TOF of each ion to be compensated for rigidity, dispersive angles, pathlength, and final position. These compensations allowed unambiguous identification of individual particle groups on which software conditions could be set to insure selection of a single isotope.

The beta detector consisted of a hollow inner cylinder of plastic scintillator 17 cm long with a 5 cm inner diameter and a 3 mm wall thickness which was surrounded by a $16 \times 16 \times 19$ cm3 plastic scintillator block with a 6.5 cm diameter hole cut along the major axis. The outer scintillator block was sectioned into quadrants along the major axis to create individual detectors of approximately $8\times8\times19$ cm3 which acted both as beta-particle detectors and a cosmic-ray shield. The Si detector telescope was held inside the beta detector by means of a thin copper cylinder (~ 1 mm thick) which provided detector cooling and acted as a filter for low-energy beta particles. Although filtering decreased the overall detection efficiency, it prevented the system from detecting beta particles arising from long-lived, low-Q_p nuclei that accumulated in the detector. Background events in the beta detectors, for example from external cosmic rays and internal gamma rays, were reduced by a fast coincidence circuit that required any valid beta event to trigger the inner cylinder and only one of the outer quadrants, and by setting upper and lower software thresholds on each detector’s energy spectrum.

The implantation rate for the $T_z = -\frac{1}{2}$ nuclei of only a few per minute compared to an overall implantation rate of ~ 1000 ions/second required a beam-on/beam-off cycle [13] in which the beam was interrupted by the data acquisition computer only when a fragment’s energy loss (ΔE_1) and TOF were within a specified software acceptance window. During the beam-off period, all events triggering the beta detector were accepted even though this resulted in multiple events, due to the presence of background, associated with each implantation. To measure the background rate, the acceptance window was set to include some $N=Z$ nuclei.

A measurement of the half-life of 62Ga (116.12 ms [14,15]) was used to test the system. Using a single setting of the system (spectrometer and acceptance window), data were obtained for ~ 11000 62Ga and ~ 7000 64Ge implanted ions with a beam-off period of 500 ms. The rate of background events within the beam-off period was constant independent of the nucleus which arrived within the acceptance window. Therefore the background rate could be determined from the ratio of decay to implantation events (R_b) associated with 64Ge ($Q_p=4.41$ MeV [16], $t_{1/2}=63.7$ s [17]) since decays from this nucleus should not trigger the beta detector. An estimate of the detection efficiency of the system (ϵ_d) for beta particles emitted by 62Ga can be made by taking the ratio of decay to implantation events associated with 62Ga and subtracting the measured background ratio (R_b) from 64Ge. The software thresholds were then adjusted to optimize ϵ_d ($\sim 14\%$) relative to R_b ($\sim 23\%$). Since the $T_z = -\frac{1}{2}$ nuclei studied will have similar beta spectra to 62Ga, ground-state to ground-state transitions with $Q_p \sim 9$–10 MeV, it is expected that they will
have similar detection efficiencies. The 62Ga decay spectrum obtained was analyzed using a maximum likelihood method in which the expected number of counts in each channel of the spectrum, given by a Poisson distribution, was obtained by integrating an exponential decay (with half-life $t_{1/2}$ and initial activity A_0) added to a constant background (B_0). All three parameters could be fit independently or held fixed, and the uncertainties ($\pm \sigma$) were determined from the value with which the likelihood value increased by one for variation of a given parameter with the others held fixed. The relatively high background level required that B_0 be held fixed in order to obtain a reasonable value for $t_{1/2}$. Consequently, the background level was first established using the measured Rb value from the 64Ge data then used to analyze the 62Ga decay spectrum giving a half-life of 113_{-6}^{+7} ms in good agreement with the literature value.

The background levels used for the other decay spectra were obtained by a weighted average of the Rb values from analysis of the 64Ge spectra and the 62Ga spectra in which $t_{1/2}$ was fixed to the literature value. The R_b value, which varied depending on the field setting for the second half of the A1200 and/or the ΔE/TOF acceptance window, was determined for each setting. Combining these R_b values with the number of implantations for each isotope at a given setting and summing over all settings provided the total number of expected background events which was then divided by the beam-off time period to fix the B_0 value used in analyzing the decay spectra. Halflife values obtained for the $T_{1/2} = -\frac{1}{2}$ nuclei were 0.15 ± 0.03 s for 61Ga, 95_{-23}^{+23} ms for 63Ge, and $0.19_{-0.07}^{+0.1}$ s for 65As. These results, along with the total number of implantations, and derived R_b and ϵ_d values for each isotope, are presented in table 1. The total R_b values differ due to variation in the background for various settings of the system and the overall buildup in activity over the course of the experiment whereas the ϵ_d values are expected to depend only on the spectrum of emitted beta particles. The measurement for 66As provided a test of the validity of the method for a low statistics case with the halflife obtained ($0.10_{-0.07}^{+0.07}$ s) in good agreement with the literature value (95.77 ± 0.23 ms [14,18]). Fig. 2a is the summed decay spectrum for 64Ge with the solid line showing the extracted background level. Within 2σ the background can be represented by a constant

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>Total implants</th>
<th>R_b</th>
<th>ϵ_d</th>
<th>$t_{1/2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>62Ge</td>
<td>22813</td>
<td>0.328\pm0.04</td>
<td>0.142\pm0.03</td>
<td>0.113$^{+0.03}_{-0.05}$</td>
</tr>
<tr>
<td>61Ga</td>
<td>972</td>
<td>0.180\pm0.02</td>
<td>0.134\pm0.02</td>
<td>0.153</td>
</tr>
<tr>
<td>63Ge</td>
<td>1219</td>
<td>0.308\pm0.04</td>
<td>0.11\pm0.02</td>
<td>0.095$^{+0.02}_{-0.03}$</td>
</tr>
<tr>
<td>65As</td>
<td>634</td>
<td>0.397\pm0.06</td>
<td>0.14\pm0.02</td>
<td>0.19$^{+0.02}_{-0.03}$</td>
</tr>
<tr>
<td>66As</td>
<td>545</td>
<td>0.382\pm0.05</td>
<td>0.08±0.03</td>
<td>0.10$^{+0.01}_{-0.02}$</td>
</tr>
</tbody>
</table>

Table 1

Halflife results from the decay spectra analysis. Information on the total number of implanted ions, and derived R_b and ϵ_d values are given for reference. The superscripted and subscripted values indicate the corresponding plus and minus σ uncertainties, respectively, in the last digits.

Fig. 2. Summed decay spectra for the indicated nuclei. (a) 64Ge data with the solid line indicating the extracted background level. (b)-(f) decay spectra for 62Ga, 61Ga, 63Ge, 65As, and 66As, respectively, where the solid line represents the total decay curve and the dashed line indicates the background level.

value. Figs. 2b-2f are the decay spectra for the indicated isotopes with the total decay curve shown as a solid line and the background level shown as a dashed line.
The present experimental result indicating that 65As decays by beta emission as opposed to proton emission is very significant. This conclusion is supported not only by our observation of a beta-decay spectrum and a detection efficiency close to that of 62Ga, but also by the fact that we observed no evidence for ground-state proton decay within the E_γ detector during the experiment. Since Coulomb barrier effects will allow 65As to live long enough to beta decay, even if it is proton unbound, it is interesting to examine the limits which the current halflife measurement sets on the mass excess of 65As. The proton separation energy, $S(p)$, must be greater than -250 keV since proton emission does not appear to compete with the beta decay [5]. When taken in combination with the mass excess of 64Ge (-54.43 ± 0.25 MeV [16,19]), this places an upper limit on the 65As mass excess of -46.89 ± 0.25 MeV. This compares well with a Coulomb displacement model [20] calculation which predicts a mass excess of -46.75 ± 0.10 MeV ($S(p) = -0.4 \pm 0.3$ MeV). In both cases, the uncertainty in $S(p)$ is dominated by the uncertainty in the 64Ge mass. Using a shell-model calculation based on the F5P interaction with no restrictions [21,22] and assuming the beta decay to be between the $\frac{3}{2}^-$ mirror ground states of 65As and 65Ge, an f_β-value of 4800 s is obtained. This f_β-value is dominated by the Fermi transition between $T = \frac{1}{2}$ isospin states ($B(F) = 1$, $B(GT) = 0.3$) and provides an estimate for Q_β of 9.1 \pm 0.8 MeV which is in good agreement with the values predicted by various mass models [7,19]. Combined with the mass excess of 65Ge (-56.41 ± 0.10 MeV [19]), this Q_β value indicates 65As mass excess of -47.3 ± 0.8 MeV ($S(p) = 0.2 \pm 0.8$ MeV). Although the uncertainties are large, the implication is that 65As is either bound with respect to proton emission or unbound by such a small amount that beta decay dominates.

The implications of this result for the rp-process center mainly on its termination point. As stated above, 65As may be unbound to proton emission by up to ~ 250 keV. However, because its halflife is dominated by beta decay, the rp-process will proceed through 65As primarily by proton capture to the proton bound nucleus 66Se even though photodisintegration may begin to play an important role if 65As is proton unbound [8]. (See fig. 1.) Therefore, 65As will not cause the rp-process to terminate at 66Ge, but rather provides the path to higher masses without significantly slowing the process. Final determination of the rp-process termination point will depend on a measurement of the halflife of 69Br as there are indications that the processing of nuclei will be slowed significantly at 72Kr due to 72Rb being unbound with respect to proton emission [6,23]. As shown in fig. 1, 61Ga, 63Ge, and 65As all lie along the rp-process path. The halflife of 63Ge is important in determining the cycle time for this process path, while 61Ga and 65As provide a path to higher mass nuclei by fast proton capture to the proton-bound nuclei 65Ge and 66Se, respectively. By measuring the beta-decay halflife of 65As, we have shown that the rp-process will proceed beyond 64Ge without being significantly slowed. While future experiments are planned to extend the measurement of $T_\beta = \frac{1}{2}$ halflives up to 69Br as well as improve the accuracy of the present results, other experiments will eventually be needed to measure the masses and structure of these nuclei.

The authors would like to thank Ron Fox for his work in developing te data acquisition software necessary for this experiment and the operations staff of the Cyclotron for the smooth operation of the accelerator throughout the experiment. This work was supported under NSF grant PHY89-13815.

References