GAS LAWS AND KINETIC THEORY

IDEAL GAS LAW

- The pressure of the atmosphere at sea level is $1.01 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$.
- Boyle's Law: For a gas at a constant temperature the product of pressure and volume is constant: $P V=$ constant, or $P_{1} V_{1}=P_{2} V_{2}$.
- Law of Charles and Gay-Lussac: For a gas at a constant pressure the volume is proportional to the temperature: $V / T=$ constant, or $V_{1} / V_{2}=T_{1} / T_{2}$.
Remember: The temperature MUST be in Kelvin!!
- Ideal gas law: $P V=n R T$, where $R=8.314 J /(\mathrm{mol} \cdot K)$ is the universal gas constant and n corresponds to the quantity of gas in moles.
- The number of moles is defined as the ratio of the total mass M of the gas and the Molecular Mass (in g / mol) of the gas: $n=M /$ MolecularMass. The Molecular mass of a gas is different for each gas. For example: Molecular oxygen $\left(O_{2}\right)=32 \mathrm{~g} / \mathrm{mol}$, Helium $(\mathrm{He})=4 \mathrm{~g} / \mathrm{mol}$ etc.
- 1 mole of any gas contains the same number of particles.

This number is $N_{A}=6.02 \times 10^{23}$ Molecules $/ \mathrm{mol}$ and is called Avogadro's number.

KINETIC THEORY OF GASES

- The temperature of a gas can be related to the internal motion of the molecules.
- The ideal gas approximation yields: $P V=2 / 3 N \overline{K E}$, where $\overline{K E}$ is the mean kinetic energy of an individual molecule and N is the total number of molecules in the gas.
- The internal energy U of a gas is defined as $U=N \overline{K E}$ and thus $P V=2 / 3 U$.
- The relation between the mean kinetic energy and the temperature is given by $\overline{K E}=3 / 2 k T$, where $k=R / N_{A}$ is the Boltzmann constant: $k=1.3807 \times 10^{-23} \mathrm{~J} / \mathrm{K}$.
- The root mean square velocity is the square root of the mean velocity squared: $v_{r m s}=\sqrt{\overline{v^{2}}}=\sqrt{3 P / \rho}$, where ρ is the density of the gas.
- $v_{r m s}$ can also be expressed as $v_{r m s}=\sqrt{3 k T / m}$, where m is the mass of one individual molecule.
- The mass of one molecule can be calculated from Avogadro's number and the Molecular mass of the gas: $m=$ MolecularMass $/ N_{A}$.
- Other helpful relations: The total mass M of a gas is the product of the Molecular Mass and the number of moles $n: M=$ MolecularMass $\times n$
The total number of gas molecules in a gas N is the product of the number of moles n and Avogadro's number $N_{A}: N=n N_{A}$.
- Barometric formula: The pressure at height h above height zero is given by $P=P_{0} e^{-m g h / k T}$.

THERMODYNAMICS

THERMODYNAMIC SYSTEMS AND ENERGY CONSERVATION

- A thermodynamic system is any collection of objects considered together. Everything else is considered the environment.
- $0^{\text {th }}$ Law: (Thermal Equilibrium) If two objects are in thermal equilibrium with a third object they are also in thermal equilibrium with each other.
- The internal energy is defined as the total energy within the system. If no phase changes are involved the internal energy is proportional to the temperature of the system.
- $1^{\text {st }}$ Law: (Energy Conservation) The change of internal energy ΔU is equal to the heat Q added to the system minus the work W done by the system: $\Delta U=Q-W$.
- Adiabatic: In an adiabatic process no heat is exchanged with the environment (fast process): $Q=0 \rightarrow \Delta U=-W$.
- Isothermal: In an isothermal process the temperature (internal energy) does not change: $\Delta U=0 \rightarrow Q=W$.
- Isobaric: In an isobaric process the pressure does not change. The work done by the system is then equal to the product of the pressure times the change of the volume: $W=P \Delta V$.
- In general, the work is equal to the area under the path in the $\mathrm{P}-\mathrm{V}$ diagram. If a system changes from P_{1} and V_{1} straight to P_{2} and V_{2} the work done is $W=1 / 2\left(P_{2}+P_{1}\right)\left(V_{2}-V_{1}\right)$.
- Isochoric: In an isochoric process the volume of a system does not change. If the volume is constant no work is done: $W=0 \rightarrow \Delta U=Q$.

CARNOT ENGINE

- In a reversible process there is no wasted energy and the system is very nearly in equilibrium at all times.
- A carnot cycle is an idealized reversible process of an ideal gas between a cold and hot reservoir and consists of four reversible processes (two adiabatic and two isothermal). Heat Q_{H} is taken out of a hot reservoir and some of this energy is converted to work and the rest is added as heat Q_{C} to the cold reservoir.
- The thermal efficiency of a carnot cycle (Heat engine) is given by the ratio of the resulting work by the heat input: Thermal efficiency $=W / Q_{H}$. The work is equal to the heat flow from the hot to the cold reservoir: $W=Q_{H}-Q_{C}$.
- The ratio Q_{C} / Q_{H} is proportional to the ratio of the temperatures T_{C} / T_{H} (in Kelvin!!) and thus: Thermal efficiency $=1-T_{C} / T_{H}$.
- The coefficient of performance (c.p.) of a refrigerator is given by: c.p. $=Q_{C} / W=T_{C} /\left(T_{H}-T_{C}\right)$.

The coefficient of performance (c.p.) of a heat pump is given by: c.p. $=Q_{H} / W=T_{H} /\left(T_{H}-T_{C}\right)$.

ENTROPY

- $2^{\text {nd }}$ Law: Heat cannot, by itself, pass from a colder to a warmer body.
- The entropy ΔS is defined as the ratio of absorbed Heat Q divided by the Temperature T in a reversible process: $\Delta S=Q / T$.

