Dynamical emission and isotope thermometry

Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824

Dipartimento di Fisica Universita ` and INFN Sezione and Laboratorio Nazionale del SUD–Catania, 195127, Catania, Italy

S. Fritz, C. Groß, T. Odeh, and C. Schwarz
Gesellschaft für Schwerionenforschung, D-64220 Darmstadt, Germany

A. Nadasen, D. Sisan, and K. A. G. Rao
Department of Natural Sciences, University of Michigan, Dearborn, Michigan 48128

(Received 20 March 1998)

Ratios of the populations of ground and excited states of 3He, 5Li, and 4Be and double ratios constructed from the yields 3He, 5Li, and 4Be and double ratios constructed from the yields 3He, 5Li, and 4Be nuclei and from thermometers based upon the yields of carbon isotopes. In contrast, apparent temperatures obtained from thermometers based upon the ratios using helium isotopes increase monotonically with incident energy.

One of the general expectations for a system undergoing a first-order phase transition is an enhanced heat capacity at temperatures of the order 4–6 MeV latent heat required to transform from one phase to the other. A first-order phase transition is an enhanced heat capacity at temperatures obtained from thermometers based upon the ratios using helium isotopes increase monotonically with incident energy.

The ratios of populations of ground and excited states of 4He, 5Li, and 8Be nuclei and from thermometers based upon the yields of carbon isotopes. In contrast, apparent temperatures obtained from thermometers based upon the ratios using helium isotopes increase monotonically with incident energy. [S0556-2813(98)50511-0]

PACS number(s): 25.70.Lm, 21.65.+f

\begin{equation}
R_{\text{iso}} = \frac{Y(A_1,Z_1)/Y(A_1+1,Z_1)}{Y(A_2,Z_2)/Y(A_2+1,Z_2)} = \frac{1}{a} \exp(B/T),
\end{equation}

where $Y(A_i,Z_i)$ is the yield for isotope with mass A_i and charge Z_i; a is a statistical factor determined by spin values and kinematics factors; $B = E_B(A_1,Z_1) - E_B(A_1+1,Z_1) - E_B(A_2,Z_2) + E_B(A_2+1,Z_2)$; and $E_B(A_i,Z_i)$ is the binding energy of the ith nucleus. Such double yield ratios have the advantage of being insensitive to chemical potential terms which strongly influence the fragment isotopic distributions.

Similarly, the ratios R_{ij} of the yields of states i and j of a specific fragment, prior to the secondary decay of the excited fragments, are given by [25]

\begin{equation}
R_{ij} = \frac{Y_i}{Y_j} = \frac{(2J_i+1)}{(2J_j+1)} e^{-(E_i^* - E_j^*)/T},
\end{equation}

where Y_i is the yield, E_i^* is the excitation energy, and J_i is the spin of the state i. In the context of rate equation approaches [26], instantaneous particle emission rates depend upon instantaneous temperatures in ways analogous to Eqs. (1) and (2); however, the total yields reflect an averaging over the time dependent cooling of the system [27–29].

"Apparent" temperatures obtained from Eqs. (1) or (2), often require corrections for the secondary decay of excited fragments. The exact magnitude of such corrections depends on the isotope or excited state ratio and the temperature [7,11,13,14]. These corrections can be minimized by choosing ratios characterized by large binding energy differences B in Eq. (1) or large $\Delta E = E_i^* - E_j^*$ in Eq. (2) (i.e., B, $\Delta E \gg T$).
Consistent values of T_{iso} and $T_{\Delta E}$ for large B and ΔE, respectively, have been obtained for central Au+Au collisions at incident energies 35 MeV \leq E/A \leq 50 MeV [7,12]. For E/A $>$ 50 MeV, however, temperatures from the two methods diverge: values for $T_{\text{iso}}(\text{He})$ extracted from Eq. (1) using yields of ^3He and ^4He isotopes increase with incident energy, but values for $T_{\Delta E}$ extracted from Eq. (2) using yields of highly excited states of ^4He, ^5Li, and ^6Be nuclei do not [12]. This discrepancy has been argued to be the result of a suppression of the numbers of highly excited fragments within the disintegrating nuclear medium [14] which would lower the values of $T_{\Delta E}$ extracted via Eq. (2). Alternatively, early emission of ^3He [27,29] could elevate the ^3He/^4He isotopic ratio and raise the values of $T_{\text{iso}}(\text{He})$ extracted via Eq. (1). In this paper, we determine T_{iso} and $T_{\Delta E}$ for central Kr+Nb collisions at E/A $=$ 35, 70, 100, and 120 MeV. Values of T_{iso} are extracted both from $Y(^3\text{He})/Y(^4\text{He})$ and from $Y(^{12}\text{C})/Y(^{12}\text{C})$ ratios—both of which have large B values [6,13]. Consistent with the findings for Au+Au collisions, $T_{\text{iso}}(\text{He})$ and $T_{\Delta E}$ agree at low energies (E/A $=$ 35 MeV) but disagree at higher energies. Surprisingly, our results show that $T_{\text{iso}}(\text{C})$ from carbon isotopes agree with $T_{\Delta E}$ from excited states. Thus, nonstatistical ^3He emission may be a more likely explanation of the discrepancy between $T_{\text{iso}}(\text{He})$ and $T_{\Delta E}$ values than the suppression of excited fragments within the disintegrating nuclear medium.

The experiment was performed by bombarding ^{93}Nb targets of 6 and 20 mg/cm2 areal density with ^{86}Kr beams at E/A $=$ 35, 70, 100, 120 MeV from the National Superconducting Cyclotron Laboratory at Michigan State University (MSU). Impact parameters were selected by gates on the multiplicity of identified charged particles detected at polar angles of θ_{lab} $=$ 7°–157° using 215 plastic ΔE–E phoswich detectors of the MSU 4π array. The data presented here represent central collisions with a charged particle multiplicity selection on the MSU 4π array corresponding to the top 20% of the total cross section and reduced impact parameter b/b_{max} \leq 0.45.

Two hexagonal modules of the 4π array, located at θ_{lab} $=$ 37° and 79° were replaced by a 96-telescope hodoscope (HODO-CT) that covered approximate polar and azimuthal angular ranges of 43° and 40°, respectively, in the laboratory. Each of these telescopes subtended a solid angle of 1.83 msr and consisted of a 300-μm-thick silicon detector followed by a 6-cm-thick CsI(52) scintillation detector. The centers of neighboring telescopes were separated by relative angles of 3.3°. To provide good coverage for light charged particles emitted at center-of-mass angles of $\theta_{\text{c.m.}}$ $=$ 90°, where contributions from the decay of projectilelike and targetlike fragments are minimal, the central angle of the hodoscope was placed at 58°, 50.6°, 42.7°, and 42.7° at incident energies of E/A $=$ 35, 70, 100 and 120 MeV, respectively. In addition, isotopically resolved fragments with 3 \leq Z \leq 6 were detected with four heavy-ion telescopes constructed of planar 75 and 5000-μm-thick silicon detectors located at polar angles of θ $=$ 27°, 36°, 75°, and 84°. The silicon detectors were calibrated to an accuracy of 2% with a precision pulser and alpha particles emitted from a ^{238}Th source. The CsI(52) scintillators were calibrated to an accuracy of 3% with recoil protons elastically scattered from a CH$_2$ target by ^{86}Kr ions at E/A $=$ 35 MeV and ^4He ions at E/A $=$ 22 and 40 MeV.

Figure 1 demonstrates the isotopic resolution achieved for elements up to carbon with the four heavy-ion telescopes. The relative populations of widely separated states in emitted ^4He (J_f^π $=$ $0^+\frac12$, E^* $=$ 20.1 MeV; J_f^π $=$ $0^+\frac12$, g.s.), ^5Li (J_f^π $=$ $3/2^+$, E^* $=$ 16.7 MeV; J_f^π $=$ $3/2^+$, g.s.), and ^6Be (J_f^π $=$ 1^+, E^* $=$ 17.6 MeV; J_f^π $=$ 2^+, E^* $=$ 3 MeV) fragments were measured with the 96 element hodoscope. Five of these six states are particle unstable; their populations were measured by detecting the coincident decay products. In Fig. 2, we present data at E/A $=$ 100 MeV for the decay of particle unstable ^5Li nuclei in the form of correlation functions, $R(E_{\text{rel}})$, which are defined in terms of the measured coincidence yield $Y_{12}(p_1,p_2)$ and the singles yield $Y_1(p_1)$ and $Y_2(p_2)$ as follows:

![Diagram](image-url)
experimental uncertainties primarily reflect uncertainties in the subtraction of the nonresonant background. The extracted temperatures $T_{\Delta E}$ are of the order of 4–4.5 MeV and show a weak variation with incident energy, a trend also observed for central Au+Au collisions [7,12].

Values of T_{iso} were obtained via Eq. (1) at the four incident energies. Carbon isotope yields were measured with the heavy-ion telescopes while the isotope yield ratios for lighter particles (Z<6) were obtained with selected detectors in the hodoscope situated at $\theta_{\text{c.m.}} \approx 90^\circ \pm 10^\circ$. (Over the measured angular range, all the single isotope yield ratios are relatively constant with respect to scattering angle.) The experimental uncertainties in these ratios mainly reflected the uncertainties in the particle identification (up to 10% in 11C). Values for T_{iso}(C-Li) (open circles) obtained from (6,7Li, 11,12C) isotope ratios vary little with incident energy, similar to the trends exhibited by the temperatures $T_{\Delta E}(^{7}$Li), $T_{\Delta E}(^{4}$He), and $T_{\Delta E}(^{8}$Be) extracted from excited states populations. Values of T_{iso} extracted from other possible ratios based upon the large binding energy difference of (11C, 12C) isotopes, including those obtained from (12,13C, 11,12C), follow the same behavior as T_{iso}(C-Li). In contrast, values of T_{iso}(He-Li) (open diamonds) obtained from (6,7Li, 3,4He) isotopes increase monotonically with incident or excitation energy, consistent with trends recently reported for other systems [5,9,12]. Similarly increasing trends are extracted from other possible ratios based upon the large binding energy difference between 3He and 4He isotopes.

Some corrections to the measured apparent temperatures can be expected due to the secondary decay of heavier isotopes that feed the yields used in Eqs. (1) and (2) [7,13,14]. Secondary decay calculations, however, predict the secondary decay corrections to $T_{\Delta E}(^{7}$Li), $T_{\Delta E}(^{4}$He), $T_{\Delta E}(^{8}$Be), and T_{iso}(He-Li) to be relatively small for apparent temperatures of the order of 4 to 4.5 MeV [7]; thus the predicted corrections to the observed values of $T_{\Delta E}(^{7}$Li), $T_{\Delta E}(^{4}$He), and $T_{\Delta E}(^{8}$Be) are small. Moreover, the secondary decay corrections to $T_{\Delta E}(^{4}$He) and T_{iso}(He-Li) should be nearly identical at all source temperatures because B and ΔE are comparable and because both are affected primarily by the feeding contributions to the ground state yield of 4He [30]. The observed strong discrepancy between $T_{\Delta E}(^{4}$He) and T_{iso}(He-Li) therefore cannot be reconciled by secondary decay calculations. To avoid drawing attention away from this discrepancy, we refer the reader to Refs. [28,20] for discussions of the small secondary decay corrections to $T_{\Delta E}(^{7}$Li), $T_{\Delta E}(^{4}$He) and $T_{\Delta E}(^{8}$Be), and focus here instead upon other issues that may influence the measured quantities more strongly.

For example, the use in Eqs. (1) and (2) of measured binding and excited state energies, with the neglect of a dependence on the volume of the emitted particle, however, is a low density approximation [4,14,31]. In Ref. [14], high values for T_{iso}(He-Li) and low values for $T_{\Delta E}(^{7}$Li) have been predicted within a common statistical framework by assuming that the radii of the unstable $T_{\Delta E}(^{7}$Li) nuclei are equal to the sum of radii of their decay products [32] whereby excited 5Li* nuclei are 3.1 times larger in volume than that of ground state 5Li nuclei. The yield of excited 5Li* then becomes suppressed relative to the yield of the ground state 5Li, and $T_{\Delta E}(^{7}$Li) is consequently reduced due

![Graph](image-url)
to the constraint that the size of excited $^5\text{Li}^*$ nuclei imposes upon the size of the remaining system. In contrast, the
volume of ^3He (17.6 MeV) is 0.95 times the volume of ^3Be (3 MeV); consequently, $T_{\Delta E}(^3\text{Be})$ is not likewise suppressed by excluded volume effects, making it difficult to
simultaneously account for the similarity of $T_{\Delta E}(^4\text{He})$, $T_{\Delta E}(^3\text{Li})$, and $T_{\Delta E}(^3\text{Be})$ and the reduction of all three relative to $T_{\Delta E}(\text{He-Li})$. This suggests that the method described in Ref. [14] to reconcile excited state and isotope

temperatures may not be supported by the present data.

Alternatively, the much larger values for $T_{\Delta E}(\text{He-Li})$ may reflect differences in the emission environments of ^3He as compared to the emission environments for fragments and alpha particles. Investigations of fragment-fragment correlations [33] and fragment charge distributions [33,34] have reported evidence for a hierarchy of timescales whereby light particle emission precedes fragment emission rendering the two processes out of equilibrium. Predictions of dynamic models for light particle emission and statistical emission rate approaches [27,29] also support this picture. Determination of the precise degree to which light particle emission during the early stages of the collision is further enhanced by statistical emission of predominantly light particles at very

high initial temperature depends on the time scale for thermalization and requires further experimental and theoretical

investigations. Qualitatively, however, both effects will cause a divergence of temperatures derived from poorly bound light particles such as d, t, ^3He from those derived from strongly bound fragments observed in the present work.

In summary, populations of the states ^4He, ^5Li, and ^8Be and double ratios constructed from the yields ^3He, $^6,^7\text{Li}$, $^{11,12,13}\text{C}$ isotopes were measured for central

Kr+Nb collisions at $E/A = 35-120 \text{ MeV}$. These ratios were used to extract apparent temperatures for emission using Eqs.

(1) and (2). Consistent and approximately constant apparent
temperatures were obtained from the excited states of ^4He, ^5Li, and ^8Be nuclei and from the yields of carbon isotopes. In contrast, apparent temperatures obtained from ratios of helium isotopes increase monotonically with incident energy. This discrepancy may be consistent with a preference for ^4He emission during the early stages of the collision and enhanced fragment emission at a lower temperature during a later stage.

This work was supported by the National Science Foundation under Grant Nos. PHY-95-28844 and PHY-93-14131.

605 (1990).

2782 (1983).

C 54, R2163 (1996).

Gupta, S. Shlomo, and S. Samaddar, ibid. 55, R1641 (1997);

S. J. Lee et al., ibid. 56, 2621 (1997); S. K. Samaddar, J. N.

et al., ibid. 72, 3468 (1994).

et al., ibid. 36, 2297 (1987).

M. B. Tsang, W. A. Friedman, and D. Durand, MSU preprint

Data Tables 36, 503 (1987).