
A number of thermodynamic quantities have been defined—useful under differing 
conditions of fixed pressure, volume, temperature, particle number, etc.  These 
are the enthalpy, the Helmholtz free energy, and the Gibbs free energy.  Together 
with the internal energy, these are referred to as thermodynamic potentials (TP). 
 
The total energy required to create a system of particles at sea level air pressure 
would include the expansive work done in displacing the air.   
We define the enthalpy to be  
 
 
The enthalpy is useful when a change takes place in a system while pressure is 
constant . 
 
We now shall introduce the other two thermodynamic potentials: the Helmholtz 
free energy F and Gibbs free energy G. Depending on the type of a process, one 
of these four thermodynamic potentials provides the most convenient description. 
All four functions have units of energy. 
 
Let’s say the system is in contact with a heat bath, so that the temperature is 
constant.  The pressure may not be constant.  To create the system, some of its 
total energy can be taken from the environment in the form of heat.  So the total 
work required to create the system is not all of U, but less than U.  Define the 
Helmholtz Free Energy of the system as  
  
Any change in a system at constant temperature will entail a change in F, 
 
 
where W is all the work done on the system.  
 
Now, if the system is at constant pressure as well as constant temperature, then 
the extra work needed to create the system is the Gibbs Free Energy: 
 
 
 

Thermodynamic potentials 

H = U + PV

F = U � TS

dF = dU � TdS = dQ+ dW � TdS

G = U � TS + PV



IfIf we envision infinitesimal changes in thermodynamic variables, we can derive 
thermodynamic identities for the thermodynamic potentials. All the 
thermodynamic properties of a system can be found by taking partial derivatives 
of the TP. For each TP, a set of so-called “natural variables” exists 
 
We have already, the thermodynamic identity for internal energy 
 
 
 
Now, consider the enthalpy, H: 
 
 
 
Now, we consider the free energy F: 
 
 
 
and the Gibbs energy 
 

dU = TdS � PdV + µdN

dH = dU + PdV + V dP = TdS + V dP + µdN

dF = dU � TdS � SdT = �SdT � PdV + µdN

dG = dU � TdS � SdT + PdV + V dP = �SdT + V dP + µdN

Potential Variables 

U (S,V,N) S, V, N 
H (S,P,N) S, P, N 
F (T,V,N) V, T, N 

G (T,P,N) P, T, N 

When considering different types of processes, we will be interested in two 
questions: 
 
(i)  what determines the stability of a system and how the system evolves 

towards an equilibrium; 
(ii)  how much work can be extracted from a system. 



Isolated Systems, independent variables S and V 
Advantages of U : it is conserved for an isolated system (it also has a simple 
physical meaning – the sum of all the kin. and pot. energies of all the particles). 
 
In particular, for an isolated system δQ=0, and dU = δW. 
 
Earlier, by considering the total differential of S as a function of variables U, V, 
and N, we arrived at the thermodynamic identity for quasistatic processes : 
 
 
The combination of parameters on the right side is equal to the exact differential 
of U . This implies that the natural variables of U are S, V, N: 
 
 
Considering S, V, and N as independent variables 
 
 
 
 
 
This yields: 
 
 
 
Again, this shows that among several macroscopic variables that characterize 
the system (P, V, T, µ, N, etc.), only three are independent, the other variables 
can be found by taking partial derivatives of the TP with respect to its natural 
variables.  
 
 

dU = TdS � PdV + µdN

U = U(S, V,N)

dN
N
UdV

V
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Equilibrium in Isolated Systems 

 UA, VA, SA
   UB, VB, SB

  

For a thermally isolated system δQ = 0. If the volume is fixed, then no work 
gets done (δW = 0) and the internal energy is conserved, U=const. 
 
While this constraint is always in place, the system might be out of equilibrium 
(e.g., we move a piston that separates two sub-systems, see Figure). If the 
system is initially out of equilibrium, then some spontaneous processes will 
drive the system towards equilibrium. In a state of stable equilibrium no 
further spontaneous processes (other than ever-present random fluctuations) 
can take place. The equilibrium state corresponds to the maximum multiplicity 
and maximum entropy. All microstates in equilibrium are equally accessible 
(the system is in one of these microstates with equal probability). 
 
 
 
This implies that in any of these spontaneous processes, the entropy tends to 
increase, and the change of entropy satisfies the condition 
 
 
Suppose that the system is characterized by a parameter x which is free to 
vary (e.g., the system might consist of ice and water, and x is the relative 
concentration of ice). By spontaneous processes, the system will approach 
the stable equilibrium (x = xeq) where S attains its absolute maximum.  
 

( ) max eq =S

0≥dS

S 

x xeq 



Enthalpy (independent variables S and P) 

The volume V is not the most convenient independent variable. In the lab, it is 
usually much easier to control P than it is to control V. To change the natural 
variables, we can use the following trick:  

( ) ( ), ,U S V U S P PV→ +

Legendre transformation 

( ) dNVdPdSTNPSdH µ++=,,

H is also a thermodynamic potential, with its 
natural variables S, P, and N. It represents the 
internal energy of a system plus the work 
needed to make room for it at P=const.  

( ) dN
N
HdP

P
HdS
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In general, if we consider processes with “other” work (such as electrical work): 
 
 
At this point, we have to consider a system which is not isolated: it is in a thermal 
contact with a thermal reservoir. 
 

dH = TdS + V dP + µdN + �W
other

otherother WVdPQWVdPTdSdH δδδ ++=++=



For the processes with P = const and δ 
Wother = 0, the enthalpy plays the same 
part as the internal energy for the 
processes with V = const and δWother = 
0. 

( ) QdH
otherWP δδ ==0,

Example: the evaporation of liquid from an open vessel is such a process, 
because no effective work is done. The heat of vaporization is the enthalpy 
difference between the vapor phase and the liquid phase. 

Let us consider the P = const processes with purely “expansion” work (δWother = 
0): 
 
 
For such processes, the change of enthalpy is equal to the thermal energy (“heat”) 
received by a system. 
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Systems in contact with a thermal reservoir 

There are two complications: 
 
1.  the energy in the system is no longer fixed (it may flow between the system 

and reservoir); 
2.  in order to investigate the stability of an equilibrium, we need to consider the 

entropy of the combined system (= the system of interest+the reservoir) – 
according to the 2nd Law, this total entropy should be maximized.  

What should be the system’s behavior in order to maximize the total entropy? 
 
 
 
 
 
 
 
For systems in thermal contact with a reservoir, we can replace the entropy with 
another, more-convenient-to-work-with function.  This, of course, does not mean 
that we can get rid of entropy. We will be able to work with a different “energy-
like” thermodynamic potential for which entropy is not one of the natural variables.   

total system reservoirS S S= +
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