
Let’s fix UA,NA and UB,NB , but allow V to vary (the membrane is insulating, 
impermeable for gas molecules, but its position is not fixed). Following the 
same logic, spontaneous “exchange of volume” between sub-systems will 
drive the system towards mechanical equilibrium (the membrane at rest). The 
equilibrium macropartition should have the largest (by far) multiplicity Ω (U, V) 
and entropy S (U, V). 
 
In mechanical equilibrium: 

Mechanical Equilibrium and Pressure 

 UA, VA, NA
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The volume-per-molecule should be the same for both sub-systems, or, if T is 
the same, P  must be the same on both sides of the membrane. 
 
 
 
 
 
 
Relation between entropy and pressure: 
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This definition implies that you are holding both the internal energy and the 
number of particles constant in taking the derivative. This can be applied to 
the expression for the entropy of a monoatomic ideal gas: 
 
 
 
 
 
 
 
 
 
 
 
This relationship is just the ideal gas law! But the ideal gas law can be 
obtained from just Newton's laws, which give an expression for average 
pressure of a gas. That along with the kinetic temperature gives the form of 
the gas law. So, looking at it from the other direction, the ideal gas law offers 
confirmation of the relationship between pressure and entropy. 
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We have finally derived the equation of state of an ideal 
gas from first principles!  



Thermodynamic identity 

Let’s assume N is fixed: 

In thermal equilibrium:  

In mechanical equilibrium:  
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This useful summary relationship called the thermodynamic identity makes 
use of the power of calculus and particularly partial derivatives. It may be 
applied to examine processes in which one or more state variables is held 
constant, e.g., constant volume, constant pressure, etc. The thermodynamic 
identity holds true for any infinitesmal change in a system so long at the 
pressure and temperature are well defined. It is presumed that the number of 
particles is constant (i.e., you are dealing with the same system before and 
after the change). 





Quasistatic Processes 

(all processes) 

dVPSdTUd −= WQUd δδ +=

(quasistatic processes with fixed N) 

Thus, for quasistatic processes : 
 
 
 
 

We see that the above relation is valid even if the work is being done, provided 
that the pressure is well-defined and uniform throughout the system. In particular, 
for the adiabatic process  

�Q = TdS dS =
�Q

T

�Q = 0 adiabatic + quasistatic = isentropic 
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is an exact differential (S is a state function).  
Thus, the factor 1/T converts δQ into an exact 
differential for quasi-static processes.  

Comment on State Functions : 
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From the Sackur-Tetrode equation for an isentropic process : 

constVTS f =⇒=Δ 2/0
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Example 
 
Bacterias of mass M with heat capacity (per unit mass) C, initially at 

temperature T0+ΔT, arebrought into thermal contact with a heat bath at 
temperature T0.. 

 
(a) Show that if ΔT<<T0, the increase ΔS in the entropy of the entire system 

(body+heat bath) when equilibrium is reached is proportional to (ΔT)2. 

(b)  Find ΔS  if the body is a bacteria of mass 10-15kg with C=4 kJ/(kg·K), 
T0=300K, ΔT=0.03K. 

(c)  What is the probability of finding the bacteria at its initial T0+ΔT for Δt 
=10-12s over the lifetime of the Universe (~1018s). 
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(c)  Ω  for the (non-equilibrium) state with Tbacteria =  300.03K   is  greater than Ω  
in the equilibrium state with Tbacteria =  300K by a factor of 
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Thus, the probability of the event happening in 1030 trials: 
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