
Bosons and fermions 
One of the fundamental results of relativistic quantum field theory is that all 
particles can be classified into two groups. 

Bosons: particles with zero or integer spin (in units of ħ). Examples: photons, 
all nuclei with even mass numbers. The wavefunction of a system of bosons is 
symmetric under the exchange of any pair of particles: Ψ(...,Qj,...Qi,..)= 
Ψ(...,Qi,...Qj,..). The number of bosons in a given state is unlimited. 
 
Fermions: particles with half-integer spin (e.g., electrons, quarks, all nuclei with 
odd mass numbers); the wavefunction of a system of fermions is anti-
symmetric under the exchange of any pair of particles: Ψ(...,Qj,...Qi,..)= -
Ψ(...,Qi,...Qj,..). The number of fermions in a given state is zero or one (the 
Pauli exclusion principle). 
 
In the early 20th century it became evident that atoms and molecules with 
even numbers of electrons are more chemically stable than those with odd 
numbers of electrons. In 1922, Niels Bohr updated his model of the atom by 
assuming that certain numbers of electrons (for example 2, 8 and 18) 
corresponded to stable "closed shells". 
 
Pauli looked for an explanation for these numbers, which were at first only 
empirical. He found an essential clue in a 1924 paper by Edmund C. Stoner 
which pointed out that for a given value of the principal quantum number (n), 
the number of energy levels of a single electron in the alkali metal spectra in 
an external magnetic field, where all degenerate energy levels are separated, 
is equal to the number of electrons in the closed shell of the noble gases for 
the same value of n. This led Pauli to realize that the complicated numbers of 
electrons in closed shells can be reduced to the simple rule of one electron per 
state, if the electron states are defined using four quantum numbers. For this 
purpose he introduced a new two-valued quantum number, identified by 
Goudsmit and Uhlenbeck as electron spin. 

Wolfgang Pauli 
(1900-1958) 

The spin-statistics relation was first 
formulated in 1939 by Markus Fierz, and 
was rederived in a more systematic way by 
Wolfgang Pauli in 1940. A more conceptual 
argument was provided by Julian 
Schwinger in 1950. 



The Bose or Fermi character of composite objects: the composite objects that 
have even number of fermions are bosons and those containing an odd number 
of fermions are themselves fermions. 
 
(an atom of 3He = 2 electrons + 2 protons + 1 neutron ⇒ hence 3He atom is a 
fermion) 
 
In general, if a neutral atom contains an odd # of neutrons then it is a fermion, 
and if it contains en even # of neutrons then it is a boson. 
 
 The difference between fermions and bosons is specified by the possible 

values of ni: 
 

fermions:   ni = 0 or 1  bosons:  ni = 0, 1, 2, ..... 

distinguish.  particles Bose statistics Fermi statistics 

n1 n2 n1 n2 n1 n2 
1 1 1 1 
2 1 2 1 2 1 
1 2 
2 2 2 2 
3 1 3 1 3 1 
1 3 
3 2 3 2 3 2 
2 3 
3 3 3 3 
4 1 4 1 4 1 
1 4 
4 2 4 2 4 2 
2 4 
4 3 4 3 4 3 
3 4 

Consider two non-interacting particles in a 1D box of length L. The total energy 
is given by 
 
 
The Table shows all possible states for the system with the total energy 
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Problem (partition function, fermions) (1) 

Calculate the partition function of an ideal gas of N=3 identical fermions in 
equilibrium with a thermal reservoir at temperature T. Assume that each particle 
can be in one of four possible states with energies ε1, ε2, ε3, and ε4. (Note that N 
is fixed). 

ε1 1 1 1 0 

ε2 1 0 1 1 

ε3 1 1 0 1 

ε4 0 1 1 1 
the number of particles in the 
single-particle state 

The Pauli exclusion principle leaves only 
four accessible states for such system. 
(The spin degeneracy is neglected).  

a state with Ei 

The partition function (canonical ensemble): 
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Problem (partition function, fermions) (2) 

Calculate the grand partition function of an ideal gas of fermions in equilibrium 
with a thermal and particle reservoir (T, µ). Fermions can be in one of four 
possible states with energies ε1, ε2, ε3, and ε4. (Note that N is not fixed). 

ε1 

ε 2 
  

ε 3 
  

ε 4 
  

each level εI  is a sub-system 
independently “filled” by the 
reservoir 
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Fermi-Dirac distribution 
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The probability of a state to be occupied by a fermion: 
 
 
 
 
 
The mean number of fermions in a particular state: 

P ("i, ni) =
1

Zi
e��ni("i�µ) ni = 0, 1

Zi =
X

ni=0,1

e��ni("i�µ) = 1 + e��("i�µ)

(µ is determined by T and 
the particle density) 

T =0 

~ kT 

ε = µ (with respect to µ)  

1 

0 

At T = 0, all the states with ε < 
µ have the occupancy = 1, all 
the states with ε > µ have the 
occupancy = 0 (i.e., they are 
unoccupied). With increasing T, 
the s tep- l ike funct ion is 
“smeared” over the energy 
range ~ kT. 
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