Electromagnetic Decay

$$
E_{i}=E_{f}+E_{\gamma}+T_{0}
$$

recoil term

$$
T_{0} \approx \frac{E_{\gamma}^{2}}{2 M_{0} c^{2}}
$$

For $A=100$ and $E_{\gamma}=1 \mathrm{MeV}$, the recoil energy is about 5 eV . But the natural linewidth of the radiation is even smaller.

The emission of photons without recoil is possible if one implants the nucleus in a lattice. In such a case, the recoil is taken by the whole lattice and not by a single nucleus. If

$$
\hbar \omega_{\text {lattice }} \gg T_{0}
$$

then, quantum-mechanically, the energy of the emitted gamma radiation takes away the total energy difference (Mössbauer effect - 1958 - or recoilless nuclear resonance fluorescence).

Multipole expansion of electrostatic potential

$V(\vec{r})=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|} \rho\left(\vec{r}^{\prime}\right) d^{3} r^{\prime} \xrightarrow[\vec{r}^{\prime}]{\rightarrow \quad$| θ^{\prime} |
| :---: |
| \vec{r} |$}$

$$
\begin{aligned}
& V(\vec{r})=\frac{1}{4 \pi \varepsilon_{0}} \sum_{n=0}^{\infty} \frac{1}{r^{n+1}} \int\left(r^{\prime}\right)^{n} P_{n}\left(\cos \theta^{\prime}\right) \rho\left(\overrightarrow{r^{\prime}}\right) d^{3} r^{\prime} \\
& V(\vec{r})=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{Q}{r}+\frac{\vec{p} \cdot \vec{r}}{r^{3}}+\frac{1}{2} \sum_{i, j} Q_{i j} \frac{x_{i} x_{j}}{r^{5}} \cdots\right) \\
& \vec{p}=\int \overrightarrow{r^{\prime}} \rho\left(\overrightarrow{r^{\prime}}\right) d^{3} r^{\prime}=\sum_{k=1}^{N} q_{k} \overrightarrow{r_{k}^{\prime}} \quad \text { dipole } \\
& Q_{i j}=\int\left(3 x_{i}^{\prime} x_{j}^{\prime}-r^{\prime 2} \delta_{i j}\right) \rho\left(\overrightarrow{r^{\prime}}\right) d^{3} r^{\prime} \quad \text { quadrupole }
\end{aligned}
$$

$$
V=-\frac{1}{1} j_{\mu} A^{\mu} \quad \begin{aligned}
& \text { This contains both electric } \\
& \text { and magnetic interactions }
\end{aligned}
$$

nuclear current external EM field

$$
\vec{A}(\vec{r}, t)=\frac{1}{N} \sum_{\vec{k}, \eta}\left\{b_{\vec{k} \eta} \vec{\varepsilon}_{n} e^{i(\vec{k} \vec{k}-\omega t)}+b_{\vec{k} \eta}^{+} \vec{\varepsilon}_{\eta} e^{-i(\vec{k} \vec{k}+\omega t)}\right\}
$$

$$
\vec{A}(\vec{r}, t)=\sum_{\lambda \mu} \vec{A}_{\lambda \mu}(\vec{r}, t) \longleftarrow \text { multipole expansion } \lambda=1,2,3 \ldots
$$

$$
\text { But what about } \lambda=0 \text { ? }
$$

The typical gamma-rays in nuclear transitions have energies less than 10 MeV , corresponding to wave numbers of the order $k^{\sim} 1 / 20 \mathrm{fm}^{-1}$ or less. The multipole operators give contributions only within the nuclear volume. That is, in most cases $k r \ll 1$ and the above series may be approximated by the first term in the expansion alone ("The longwavelength limit"). We are now ready to calculate the contribution of each multipole order to the transition probability from an initial nuclear state to a final state.

$$
\mathcal{W}\left(\lambda ; J_{i} \zeta \rightarrow J_{f} \xi\right)=\frac{8 \pi(\lambda+1) k^{2 \lambda+1}}{\lambda[(2 \lambda+1)!!]^{2} \hbar} B\left(\lambda ; J_{i} \zeta \rightarrow J_{f} \xi\right)
$$

reduced transition probability

Electromagnetic Rates

$$
\begin{aligned}
& \left.B\left(\lambda ; J_{i} \xi \rightarrow J_{f} \xi\right)=\sum_{\mu M_{f}}\left|\left\langle J_{f} M_{f} \xi\right| O_{\lambda \mu}\right| J_{i} M_{i} \xi\right\rangle\left.\right|^{2}=\frac{1}{2 J_{i}+1}\left|\left\langle J_{f} \xi\left\|O_{\lambda \mu}\right\| J_{i} \xi\right\rangle\right|^{2} \\
& O_{\lambda \mu}(E \lambda)=\sum_{i=1}^{A} e(i) r_{i}^{\lambda} Y_{\lambda \mu}\left(\Omega_{i}\right) \quad \vec{j}_{i}=\vec{s}_{i}+\vec{l}_{i} \\
& O_{\lambda \mu}(M \lambda)=\sum_{i=1}^{A}\left[g_{s}(i) \vec{s}_{i}+g_{l}(i) \frac{2 \vec{l}_{i}}{\lambda+1}\right] \vec{\nabla}_{i}\left[r_{i}^{\lambda} Y_{\lambda \mu}\left(\Omega_{i}\right)\right] \\
& \\
& \text { gyromagnetic factors }
\end{aligned}
$$

Selection Rules

$$
\frac{\mathcal{W}(\lambda+1)}{\mathcal{W}(\lambda)} \sim(k R)^{2} \quad \begin{aligned}
& \text { large reduction in probability } \\
& \text { with increasing multipolarity order! }
\end{aligned}
$$

$$
\left|J_{f}-J_{i}\right| \leq \lambda \leq J_{f}+J_{i}
$$

Magnetic transitions are weaker than electric transitions of the same multipolarity

