Fission

Fission

Chart of Nuclides

Click on a nucleus for information

1938 Hahn \& Strassmann 1939 Meitner \& Frisch 1939 Bohr \& Wheeler 1940 Petrzhak \& Flerov

N,Z

Fission yields (fragments)
 is absorbed.

The absorbed neutron causes the nucleus to undergo deformation.
In about 10^{-14} second, one of the deformations is so drastic that the nucleus cannot recover.

The nucleus fissions, releasing two or more neutrons.

In about 10^{-12} second, the fission fragments lose their kinetic energy and come to rest, emitting a number of gamma rays. Now the fragments are called fission products

The fission products lose their excess energy by radioactive decay, emitting bet a particles and gamma rays over a lengthy time period (seconds to years)
O neutrons protons obeta particles gamma rays

Understanding the fission process is crucial for many areas of science and technology:

- Fission governs the production and existence of many transuranium elements, including the predicted long-lived super-heavy species.
- Fission influences the formation of heavy elements in a neutron rich environment.
- Fission produces reactor antineutrinos
- Improved understanding of the fission process will enable scientists to enhance the safety and reliability of nuclear reactors.
- Fission is important for stockpile stewardship

The new phase in fission theory is expected to rely heavily on advanced modeling and simulation capabilities utilizing massively parallel leadership-class computers

A nuclear chain reaction. Green arrows show the split of a uranium nucleus in two fission fragments, emitting new neutrons. Some of these neutrons can induce new fission reactions (black arrows). Some of the neutrons may be lost in other processes (blue arrows). Red arrows show the delayed neutrons that come later from the radioactive fission fragments and that can induce new fission reactions.

See popular article

1939: Bohr's paper on fission

These circumstances find their straightforward explanation in the fact, stressed by Meitner and Frisch, that the mutual repulsion between the electric charges in a nucleus will for highly charged nuclei counteract to a large extent the effect of the short-range forces between the nuclear particles in opposing a deformation of the nucleus. The nuclear problem concerned reminds us indeed in several ways of the question of the stability of a charged liquid drop, and in particular, any deformation of a nucleus, sufficiently large for its fission, may be treated approximately as a classical mechanical problem,

The continuation of the experiments on the nistanhition type of nuclear disintegrations, and above all the closer examination of the conditions for their occurrence, should certainly yield most valuable information as regards the mechanism of nuclear excitation.
N. Bohr.

At the Institute for Advanced Study, Princeton, N.J. Jan. 20.

Letters to the Editor

The Editor does not hold himself responsible for opinions expressed by his correspondents. He cannot undertake to return, or to correspond with the writers of, rejected manuscripts intended for this or any other part of Nature. No notice is taken of anonymous communications

Notes on points in some of this week's letters appear on p. 337.
Correspondents are invited to attach similar summaries to their communications.

Disintegration of Heavy Nuclei

Throvar the kindness of the authors I have been informed of the content of the letters ${ }^{1}$ recently sent to the Editor of Nature by Prof. Meitner and Dr.
Frisch. In the first letter, these authors propose an interpretation of the remarkable findings of Hahn and Strassmann as indication for a new type of disintegration of heavy nuclei, consisting in a fission of the nucleus into two parts of approximately equal masses and charges with release of enormous energy masses and charges with release of enormous energy. h these parts are directly detected by
 ew comments on the mechanism of the from the point of view of the general d in recent years, to account for the of the nuclear reactions hitherto
these ideas, any nuclear reaction ollisions or radiation involves as an tage the formation of a compound ich the excitation energy is distrithe various degrees of freedom in ing the thermal agitation of a solid . The relative probabilities of the le courses of the reaction will there the facility with which this energy produce the disintegration of the us. In the case of ordinary reactions, isintegration consists in the escape of part conversion means the concentraof the nucleus, and resembles therefore n of a molecule from a liquid drop disintegrations comparable to th ssary, however, that the quasi-thermal of energy be largely converted into mode of vibration of the compound a considerable deformation of the es, the course of the disintegration may to result from a fluctuation in the es of freedom of the system, the proburrence of which is essentially deter amount of energy to be concentrated alar type of motion considered and by ture corresponding to the nuclear ince the effective cross-sections for the nena for neutrons of diferent velocities ions for ordinary nuclear reactions, we , conclude that for the heaviest nuclei on energy sufficient for the fission is of
the same order of magnitude as the energy necessary for the escape of a single nuclear particle. For somelike disintegrations have so far been observed, the former energy should be considerably larger than the binding energy of a particle,

These circumstances find their straightforward explanation in the fact, stressed by Meitner and Frisch, that the mutual repulsion between the electric charges in a nucleus will for highly charged short-range forces between the nuclear particles in opposing a deformation of the nucleus. The nuclear problem concerned reminds us indeed in several ways of the question of the stability of a charged liquid drop, and in particular, any deformation of a nucleus, sufficiently large for its fission, may be treated approximately as a classical mechanical problem, since the corresponding amplitude must evidently point oscillations. Just this condition would in fact seem to provide an understanding of the remarkable stability of heavy nuclei in their normal state or in the states of low excitation, in spite of the large amount of energy which would be liberated by an imaginable division of such nuclei.
he concer type of nuclear disintegrations, and above all the
closer examination of the conditions for their occurrence, should certainly yield most valuable information as regards the mechanism of nuclear excitation.

Princeton, N.J. Jan. 20
[NATURE, 143, 239 and 275 (1939)].
Photoactivation of Solids and its Effect on Adsorption Considerable attention has been given recently to chemical processes involving an activating influence of a crystal excited by irradiation ${ }^{1}$. The mechanism of such photosensitized reactions, although unknown in detail, is generally believed to be a more or less complete transfer of the energy absorbed by the
crystal to the reacting components, physically or chemically. Accordingly, the essential difference between photosensitized processes and real photochemical ones is the distance between the place of absorption and the place of reaction. But there must also be another, more general, effect of irradiation on the activity of crystals. Due to the change in the electronic state of the particles in the lattice of polarization, formation of space charges, etc.), the forces between the particles are changed and, consequently, there is also a change in potential of the

Deformed liquid drop (Bohr \& Wheeler, 1939)

fission of nuclear droplet

$$
\begin{aligned}
& E_{L D M}(d e f)=E_{S}(0)\left[B_{S}(d e f)-1+2 x\left(B_{C}(d e f)-1\right)\right] \\
& B_{S}(d e f)=\frac{E_{S}(d e f)}{E_{S}(0)}, \quad B_{C}(d e f)=\frac{E_{C}(d e f)}{E_{C}(0)} \\
& x=\frac{E_{C}(0)}{2 E_{S}(0)}=\frac{Z^{2} / A}{\left(Z^{2} / A\right)_{c r i t}} \approx \frac{Z^{2}}{50 A}
\end{aligned}
$$

x: fissility parameter

The nuclear droplet stays stable and spherical for $x<1$. For $x>1$, it fissions immediately. For ${ }^{238} \mathrm{U}, \mathrm{x}=0.8$

Realistic calculations
Nature 409, 785 (2001)

- All elements heavier than $\mathrm{A}=110-120$ are fission unstable!
- But... the fission process is fairly unimportant for nuclei with $\mathrm{A}<230$. Why?

