Isotope Shift

Laser trapping of exotic atoms. RMP 85, 1383 (2013)

TABLE I. Contributions to the electronic binding energy and their orders of magnitude in atomic units. a_0 is the Bohr radius, $\alpha \approx 1/137$. For helium, the atomic number Z = 2, and the mass ratio $\mu/M \sim 1 \times 10^{-4}$. g_I is the nuclear g factor. α_d is the nuclear dipole polarizability.

Contribution	Magnitude	
Nonrelativistic energy	Z^2	
Mass polarization	$Z^2 \mu/M$	
Second-order mass polarization	$Z^2(\mu/M)^2$	
Relativistic corrections	$Z^4 \alpha^2$	
Relativistic recoil	$Z^4 \alpha^2 \mu / M$	
Anomalous magnetic moment	$Z^4 \alpha^3$	ç
Hyperfine structure	$Z^3 g_I \mu_0^2$	
Lamb shift	$Z^4 \alpha^3 \ln \alpha + \cdots$	~
Radiative recoil	$Z^4 \alpha^3 (\ln \alpha) \mu / M$	
Finite nuclear size	$Z^4 \langle r_c/a_0 \rangle^2$	
Nuclear polarization	$Z^3 e^2 \alpha_d / (\alpha a_0^4)$	

$$\alpha = \frac{1}{137}$$

 μ =reduced electron mass

Difference in mean-square charge radii for the N~60 region, PRL 105, 032502 (2010)

Neutron radii

- Proton-Nucleus elastic
- Pion, alpha, d scattering
- Pion photoproduction

Involve strong probes

Phys. Rev. Lett. 112, 242502 (2014)

http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.112.242502

Parity-violating electron scattering

 Z_0 of Weak Interaction

$$\gamma_{e}$$
 γ_{e} Z_{e} M_{z} =90.19 GeV!

Parity Violating Asymmetry

$$A = \frac{\left(\frac{d\sigma}{d\Omega}\right)_{R} - \left(\frac{d\sigma}{d\Omega}\right)_{L}}{\left(\frac{d\sigma}{d\Omega}\right)_{R} + \left(\frac{d\sigma}{d\Omega}\right)_{L}} = \frac{G_{F}Q^{2}}{2\pi\alpha\sqrt{2}} \left[\underbrace{1 - 4\sin^{2}\theta_{W}}_{\approx 0} - \frac{F_{n}(Q^{2})}{F_{P}(Q^{2})}\right] \sim 7 \cdot 10^{-7}$$

Weinberg angle: $\sin^2 \theta_W = 0.23120 \pm 0.00015$

	proton	neutron
Electric charge	1	0
Weak charge	0.08	1

A comment: Yukawa potential

Lead (²⁰⁸Pb) Radius Experiment : PREX

Analysis is clean, like electromagnetic scattering:

- 1. Probes the entire nuclear volume
- 2. Perturbation theory applies

E = 850 MeV, θ = 6⁰ electrons on lead

Phys. Rev. Lett. 108, 112502 (2012)

http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.108.112502

$$R_{skin} = R_n - R_p$$

PREX: $0.34^{+0.15}_{-0.17} fm$
Theory: $0.168 \pm 0.022 fm$

Neutron & proton density distributions

S. Mizutori et al., Phys. Rev. C61, 044326 (2000)

Neutron Number N

HW: Assuming the nucleus of mass number *A* to be a spherical object with a sharp surface and constant nucleonic density ρ_0 = 0.16 nucleons/fm³, find the relation between nuclear radius and *A*.

Test the performance of the resulting expression by comparing with experimental data for charge radii: <u>http://www.sciencedirect.com/science/article/pii/S0092640X12000265</u> Assume that the radius of the mass distribution is the same as the radius of the charge distribution. Note that this reference discusses <u>root-mean-square (rms)</u> nuclear charge radii not geometric radii.