ab-initio alpha-alpha scattering

Elhatisari et al., Nature 528, 111 (2015)
http://www.nature.com/nature/journal/v528/n7580/full/nature16067.html http://www.nature.com/nature/journal/v528/n7580/abs/528042a.html
http://phys.org/news/2015-12-insights-creation-heavy-elements-simulate.html

The frontier: neutron-rich calcium isotopes

probing nuclear forces and shell structure in a neutron-rich medium

${ }^{54} \mathrm{Ca}$: 20 protons, 34 neutrons

RIBF@RIKEN
Steppenbeck et al Nature (2013)

Anomalous Long Lifetime of ${ }^{14} \mathrm{C}$

Determine the microscopic origin of the suppressed β-decay rate: 3N force

Maris et al., PRL 106, 202502 (2011)

Dimension of matrix solved for 8 lowest states $\sim 10^{9}$ Solution took ~ 6 hours on 215,000 cores on Cray XT5 Jaguar at ORNL

Neutron and weak-charge distributions of the ${ }^{48}$ Ca nucleus
G. Hagen ${ }^{1,2 \star}$, A. Ekström ${ }^{1,2}$, C. Forssén ${ }^{1,2,3}$, G. R. Jansen ${ }^{1,2}$, W. Nazarewicz ${ }^{1,4,5}$, T. Papenbrock ${ }^{1,2}$,
K. A. Wendt ${ }^{1,2}$, S. Bacca ${ }^{6,7}$, N. Barnea ${ }^{8}$, B. Carlsson ${ }^{3}$, C. Drischler ${ }^{9,10}$, K. Hebeler ${ }^{9,10}$,
M. Hjorth-Jensen ${ }^{4,11}$, M. Miorelli ${ }^{6,12}$, G. Orlandini ${ }^{13,14}$, A. Schwenk ${ }^{9,10}$ and J. Simonis ${ }^{9,10}$

ORNL, University of Tennessee, Michigan State University, Chalmers University of

$$
\begin{aligned}
& 15 \cdot 16 \cdot 27 \cdot 18 \cdot 190^{20} \quad 21 \\
& \text { km }
\end{aligned}
$$ Technology, TRIUMF, Hebrew University, Technical University Darmstadt, University of Oslo, University of Trento

Fusion of Light Nuclei

Computational nuclear physics enables us to reach into regimes where experiments and analytic theory are not possible, such as the cores of fission reactors or hot and dense evolving environments such as those found in inertial confinement fusion environment.

Ab initio theory reduces uncertainty due to conflicting data

- The $n-{ }^{3} \mathrm{H}$ elastic cross section for 14 MeV neutrons, important for NIF, was not known precisely enough.
- Delivered evaluated data with required 5\% uncertainty and successfully compared to measurements using an Inertial Confinement Facility
- "First measurements of the differential cross sections for the elastic $n-{ }^{2} \mathrm{H}$ and $\mathrm{n}-{ }^{3} \mathrm{H}$ scattering at 14.1 MeV using an Inertial Confinement Facility", by J.A. Frenje et al., Phys. Rev. Lett. 107, 122502 (2011)
http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.107.122502

Configuration interaction techniques

- light and heavy nuclei
- detailed spectroscopy
- quantum correlations (lab-system description)

Average one-body Hamiltonian

Flat

 bottom$$
\hat{H}_{0}=\sum_{i=1}^{A} h_{i}, \quad h_{i}=-\frac{h^{2}}{2 M} \nabla_{i}^{2}+V_{i}
$$

$$
h_{i} \phi_{k}(i)=\varepsilon_{k} \phi_{k}(i)
$$

$$
\begin{aligned}
\phi & =\frac{1}{\sqrt{A!}}\left|\begin{array}{cccc}
\phi_{i}\left(\mathbf{r}_{1}\right) & \phi_{i}\left(\mathbf{r}_{2}\right) & \ldots & \phi_{i}\left(\mathbf{r}_{A}\right) \\
\phi_{j}\left(\mathbf{r}_{1}\right) & \phi_{j}\left(\mathbf{r}_{2}\right) & & \phi_{j}\left(\mathbf{r}_{A}\right) \\
& \vdots & \ddots & \vdots \\
\phi_{l}\left(\mathbf{r}_{1}\right) & \phi_{l}\left(\mathbf{r}_{2}\right) & \ldots & \phi_{l}\left(\mathbf{r}_{A}\right)
\end{array}\right| \\
& =a_{l}^{+} \ldots a_{j}^{+} a_{i}^{+}|0\rangle
\end{aligned}
$$

$$
\begin{gathered}
\text { Nuclear shell model } \\
\hat{H}=\sum_{i} t_{i}+\frac{1}{2} \sum_{\substack{i, j \\
i \neq j}} v_{i j}=\sum_{i}\left(t_{i}+V_{i}\right)+\left[\frac{1}{2} \sum_{\substack{i, j \\
i \neq j}} v_{i j}-\sum_{i} V_{i}\right] \\
\substack{\text { One-body } \\
\text { Hamiltonian }}
\end{gathered}
$$

- Construct basis states with good $\left(J_{z}, T_{z}\right)$ or (J, T)
- Compute the Hamiltonian matrix
- Diagonalize Hamiltonian matrix for lowest eigenstates
- Number of states increases dramatically with particle number

$$
\begin{aligned}
& \text { Full } f p \text { shell for }{ }^{60} \mathrm{Zn}: \approx 2 \times 10^{9} J_{z} \text { states } \\
& 5,053,594 \quad J=0, T=0 \text { states } \\
& 81,804,784 \quad J=6, T=1 \text { states }
\end{aligned}
$$

$$
P+Q=1
$$

- Can we get around this problem? Effective interactions in truncated spaces (P-included, finite; Q-excluded, infinite)
- Residual interaction (G-matrix) depends on the configuration space. Effective charges
- Breaks down around particle drip lines

G-matrix, obtained from the BetheGoldstone equation (scattering within a nuclear medium)

Microscopic valence-space Shell Model Hamiltonian

Coupled Cluster Effective Interaction
(valence cluster expansion)

In-medium SRG Effective Interaction

S.K. Bogner et al., Phys. Rev. Lett. 113, 142501 (2014)
G.R. Jansen et al., Phys. Rev. Lett. 113, 142502 (2014)

Diagonalization Shell Model (medium-mass nuclei reached;dimensions 109!)

Honma, Otsuka et al., PRC69, 034335 (2004)

