
Configuration interaction techniques
• light and heavy nuclei
• detailed spectroscopy
• quantum correlations (lab-system description)

NN+NNN
interactions Renormalization

Diagonalization
Truncation+diagonalization

Monte Carlo

Observables

• Direct comparison with 
experiment

• Pseudo-data to inform 
reaction theory and DFT

Matrix elements
fitted to experiment

Input: configuration space + forces Method
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Nuclear shell model

Residual
interactioni

One-body
Hamiltonian

• Construct basis states with good (Jz, Tz) or (J,T)
• Compute the Hamiltonian matrix
• Diagonalize Hamiltonian matrix for lowest  eigenstates
• Number of states increases dramatically with particle number

• Can we get around this problem? Effective interactions in 
truncated spaces (P-included, finite;  Q-excluded, infinite)

• Residual interaction (G-matrix) depends on the  configuration 
space. Effective charges

• Breaks down around particle drip lines

Full fp shell for 60Zn :  ≈ 2 ×109 Jz states
5,053,594 J = 0,T = 0 states
81,804, 784 J = 6,T =1 states

P +Q = 1



Microscopic valence-space Shell Model Hamiltonian

Coupled Cluster Effective Interaction
(valence cluster expansion)

In-medium SRG Effective Interaction

MBPT      IM-SRG 
  NN+3N-ind

     IM-SRG 
   NN+3N-full

 Expt.
0

1

2

3

4

5

6

7

8

En
er

gy
 (M

eV
)

0+

2+

2+ 2+

0+ 0+

(2+)
2+

2+

(0+)0+

0+

4+

4+ (4+)

4+

2+

0+

2+

0+

3+

3+ 3+

3+

0+

22O

CC
EI Ex
p.

US
D

0
1
2
3
4
5
6
7
8

En
er
gy

(M
eV

)

0+

2+

3+

0+

2+
4+

3+

0+

2+

3+
0+

0+

2+

3+

2+
4+
4+

22O

G.R. Jansen et al., Phys. Rev. Lett. 113, 142502 (2014)

S.K. Bogner et al., Phys. Rev. Lett. 113, 142501 (2014)



Diagonalization Shell Model
(medium-mass nuclei reached;dimensions 109!) 

Martinez-Pinedo
ENAM�04

Honma, Otsuka et al., PRC69, 034335 (2004) 
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NN+NNN
interactions

Density Matrix
Expansion

Input

Energy Density
Functional

Observables

• Direct comparison with 
experiment

• Pseudo-data for reactions 
and astrophysics

Density dependent
interactions

Fit-observables
•experiment
•pseudo data

Optimization

DFT variational principle
HF, HFB (self-consistency)

Symmetry breaking

Symmetry restoration
Multi-reference DFT (GCM)

Time dependent DFT (TDHFB)

Nuclear Density Functional Theory and Extensions

• two fermi liquids
• self-bound
• superfluid (ph and pp channels)
• self-consistent mean-fields
• broken-symmetry generalized product states

Technology to calculate observables
Global properties

Spectroscopy
DFT Solvers

Functional form
Functional optimization

Estimation of theoretical errors



Mean-Field Theory ⇒ Density Functional Theory

• mean-field  ⇒ one-body densities

• zero-range ⇒ local densities

• finite-range ⇒ gradient terms

• particle-hole and pairing 
channels

• Has been extremely successful. 
A broken-symmetry generalized 
product state does surprisingly 
good job for nuclei.

Nuclear DFT
• two fermi liquids
• self-bound
• superfluid

Degrees of freedom: nucleonic densities



• Constrained by microscopic theory: ab-initio functionals provide quasi-data! 
• Not all terms are equally important. Usually ~12 terms considered
• Some terms probe specific experimental data
• Pairing functional poorly determined. Usually 1-2 terms active.
• Becomes very simple in limiting cases (e.g., unitary limit)
• Can be extended into multi-reference DFT (GCM) and projected DFT

Nuclear Energy Density Functional

p-h density p-p density (pairing functional)

isoscalar (T=0)  density

€ 

ρ0 = ρn + ρp( )

isovector (T=1)  density

€ 

ρ1 = ρn − ρp( )

+isoscalar and isovector densities:
spin, current, spin-current tensor, 
kinetic, and kinetic-spin

+ pairing densities

E =
�
H(r)d3r

Expansion in densities 
and their derivatives



Mass table

Goriely, Chamel, Pearson: HFB-17
Phys. Rev. Lett. 102, 152503 (2009)

dm=0.581 MeV

Cwiok et al., Nature, 433, 705 (2005)

BE differences

Examples: Nuclear Density Functional Theory

Traditional (limited) functionals 
provide quantitative description
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S2n = 2 MeV

How many protons and neutrons can be bound in a nucleus?

Skyrme-DFT: 6,900�500syst

Literature: 5,000-12,000

288
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Erler et al.
Nature 486, 509 (2012) 

Asymptotic freedom ?

from B. Sherrill
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Quantified Nuclear Landscape



Small and Large-Amplitude Collective Motion
• New-generation computational frameworks developed

• Time-dependent DFT and its extensions
• Collective Schrödinger Equation
• Quasi-particle RPA
• Projection techniques

• Applied to HI fusion, fission, coexistence phenomena
Shape coexistence

Hinohara et al.  PRC 84, 061302(R) (2011)

Fusion cross section
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Ec.m. = 55 MeV, TDDFT
 Experiment

48Ca+238U

R. Keser et al., PRC 85, 044606 (2012)

48Ca+48Ca

also: Tsunoda et al. Phys. Rev. C 89, 031301(R) (2014); HPCI



Quest for understanding the neutron-rich matter on 
Earth and in the Cosmos

DataCrustal structures in neutron stars
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The covariance ellipsoid for the 
neutron skin Rskin in 208Pb and the 
radius of a 1.4M⊙ neutron star. The 
mean values are: R(1.4M⊙ )=10 km 
and Rskin= 0.17 fm.



Future: large multi-institutional efforts involving strong coupling 
between physics, computer science, and applied math

“High performance computing 
provides answers to 
questions that neither 
experiment nor analytic 
theory can address; hence, it 
becomes a third leg 
supporting the field of nuclear 
physics.” (NAC Decadal 
Study Report)

High Performance Computing and Nuclear Theory




