NN potentials from partial wave analysis

Laboratory energy in MeV

Paris potential

CD-Bonn potential

Scattering length and effective range

At very low energies, the ℓ =0 total cross section remains finite for NN scattering

$$\lim_{E \to 0} \sigma = 4\pi a^2$$
 S-wave scattering length

$$a = \lim_{k \to 0} \Re \left\{ -\frac{1}{k} e^{i\delta_0} \sin \delta_0 \right\}$$
 is positive if there is a bound state

$$k \cot \delta_0 = -\frac{1}{a} + -\frac{1}{2} r_e k^2$$
 effective range

,		S = 0, T = 1 (fm)	S=1, T=0 (fm)	
pp	a	-17.1 ± 0.2	÷.	
	re	2.794 ± 0.015	—	
nn	a	-16.6 ± 0.6	—	
	t _e	2.84 ± 0.03	<u> </u>	
np	a	-23.715 ± 0.015	5.423 ± 0.005	
	re	2.73±0.03	1.73 ± 0.02	

Resolution and Effective Field Theory

multipole expansion of electrostatic potential

$$V(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \sum_{n=0}^{\infty} \frac{1}{r^{n+1}} \int (r')^n P_n(\cos\theta')\rho(\vec{r'}) d^3r'$$
$$V(\vec{r}) = \frac{1}{4\pi\varepsilon_0} \left(\frac{Q}{r} + \frac{\vec{p}\cdot\vec{r}}{r^3} + \frac{1}{2} \sum_{i,j} Q_{ij} \frac{x_i x_j}{r^5} \cdots \right)$$
$$\vec{p} = \int \vec{r'}\rho(\vec{r'}) d^3r' = \sum_{k=1}^{N} q_k \vec{r'_k}$$
$$Q_{ij} = \int (3x'_i x'_j - r'^2 \delta_{ij})\rho(\vec{r'}) d^3r'$$

Digital Resolution: Higher Resolution is Better (?)

- Computer screens, printers, digital cameras, TV's ...
- Higher resolution
 more pixels
- Pixel size ≪ characteristic scale ⇒ greater detail
- Greater resolution
 more \$\$\$

Consequences

For a slit of width a,

$$\theta_{\min} = \sin^{-1}(\lambda/a)$$

so if $\lambda \ge a$, you don't learn anything about the details of the slit

• de Broglie relation: $\lambda = h/p$

- $\lambda \approx 10^{-10} \,\mathrm{m} \Longrightarrow \mathrm{probe} \mathrm{atoms}$
- $\lambda \approx 10^{-14} \,\mathrm{m} \Longrightarrow \mathrm{probe} \mathrm{nucleus}$
- $\lambda \approx 10^{-18} \,\mathrm{m} \Longrightarrow \mathrm{probe \ quarks}$
- If system is probed at low energies, fine details not resolved
- Use low-energy variables for low-energy processes
- Short-distance structure can be replaced by something simpler without distorting low-energy observables
- Physics interpretation can change with resolution!

three-nucleon interactions

Three-body forces between protons and neutrons are analogous to tidal forces: the gravitational force on the Earth is *not* just the sum of Earth-Moon and Earth-Sun forces (if one employs point masses for Earth, Moon, Sun)

nucleon-nucleon interactions from chiral EFT

N³LO: Entem et al., PRC68, 041001 (2003) Epelbaum, Meissner, et al.

Renormalization group (RG) evolved nuclear potentials

		_		
	LIT.		rn	n
			IUJ	
$\mathbf{\nabla}$				

Binding energy	2.225 MeV
Spin, parity	1+
Isospin	0
Magnetic moment	μ=0.857 μ _N
Electric quadrupole moment	Q=0.282 e fm ²

 $|\psi_d\rangle = 0.98|{}^{3}S_1\rangle + 0.20|{}^{3}D_1\rangle$ D-wave produced by tensor force!

Deuteron Shapes with V₁₈

 $M_d = 0$

Jlab data

http://www.phy.anl.gov/theory/movie-run.html

Short Range Correlations and Tensor Force

http://cerncourier.com/cws/article/cern/34919 http://cerncourier.com/cws/article/cern/37330

Dominance of proton–neutron pairs at intermediate range (c.o.m. momenta around 400 MeV/c)

Science 320, 1475 (2008)

Theory explains the pn pair dominance in terms of the tensor force: Phys. Rev. Lett. 98, 132501 (2007)