Nuclear AstrophysicsArtemis SpyrouModels

Observations

Input

Artemis Spyrou, PHY802/492, 1

Astro

Figure Credit: Erin O'Donnel, NSCL

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gď	Tb	Dy	Но	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

How Can We Tell?

Light from a red giant (s-process):

Star contains Technetium (Tc) !!! (heavy element Z=43, $T_{1/2}$ = 4 Million years, Merrill 1952)

Merrill 1952

- Known at the time that Tc is an "artificial" element
- Artificial = someone has to make it

96Ru STABLE 5.54%	97Ru 2.83 D ε: 100.00%	98Ru STABLE 1.87%	99Ru STABLE 12.76%	100Ru STABLE 12.60%	101Ru STABLE 17.06%	102Ru STABLE 31.55%	103Ru 39.247 D β-: 100.00%
95Te 20.0 H १: 100.00%	96Tc 4.28 D 8: 100.00%	97Tc 4.21E+6 Y 8: 100.00%	98Tc 4.2E+6 Υ β-: 100.00%	99Tc 2.111E+5 Υ β-: 100.00%	100Te 15.46 S β-: 100.00% ε: 2.6E-3%	101Tc 14.02 Μ β-: 100.00%	102Te 5.28 S β-: 100.00%
94Mo STABLE 9.15%	95Mo STABLE 15.84%	96Mo STABLE 16.67%	97Mo STABLE 9.60%	98Mo STABLE 24.39%	99Μο 65.976 Η β-: 100.00%	100Mo 7.3E+18 Y 9.82% 2β-: 100.00%	101Mo 14.61 Μ β-: 100.00%

• Merril 1952: "It is surprising to find an unstable element in the stars" ... "(1) A stable isotope (of technetium) actually exists although not yet found on Earth; or (2) S-type stars somehow produce technetium as they go along; or (3) S-type stars represent a comparatively transient phase of stellar existence"

Nuclear Landscape

Nuclear-Astro-physics

Nucleosynthesis paths

Nuclear input: What do we need? Basic nuclear properties

Abundances

From M. Wiescher, JINA web

s/r-process paths and abundances

Sneden, C., Cowan, J. J., & Gallino, R., Ann. Rev. Ast. Ap. 46 (200

r-process simulation

Neutron Captures

Fission

54166168170172174

β-decay half-lives

β -delayed neutron emission

GW170817

- First observation of neutron-star merger
- Multi-messenger astronomy: 3 GW detectors + 90 telescopes observed the event
- Observation of Heavy elements!!! A LOT of them: ~100 Earth Masses of gold.
- What does this mean for nuclear astrophysics?
 - We know neutron-star mergers is **at least one of the sites** for the r-process
 - Better constraint on astrophysical conditions, need to **constrain nuclear input**.
 - Tidal tails: Cold and neutron rich-> (n,γ) (γ,n) equilibrium is not reached: neutron-capture reactions more important than ever
 - More neutron-rich than expected->need to reach **even farther** from the valley of stability

X-ray bursts

Accreting Neutron Star

- X-ray bursts: most frequent explosions
- Neutron star + companion
- NS accretes H and He-rich material
- Large gravitational attraction!!!
- Material compresses, heated and eventually undergoes thermonuclear burning
- BOOM: X-ray burst
- Process repeated every few hours days

(p, γ) reaction rates

• Neutron density: 10¹⁵ cm⁻³

Η

(intermediate between s process (<10¹¹ cm⁻³), and r process (>10²² cm⁻³))

- Proposed in the 1970s and revived recently to explain observations of "strange" abundance distributions (post-AGB and CEMP stars)
- Neutron production: ${}^{13}C(\alpha,n) {}^{16}O$ reaction like s process
- Replenishment of ¹³C via ¹²C(p, γ)¹³N and ¹³N(e⁺)¹³C with T_{1/2}~10 minutes.

(n,γ) reaction rates Nova contribution to Galactic ²⁶Al?

Data from COMPTEL & INTEGRAL-SPI (MPE Garching / Roland Diehl)

Nuclear Input: How to get it!

- Identify necessary properties
- Identify nuclei that matter
- For nuclear reactions identify appropriate conditions
 - Which astrophysical environment?
 - What is the temperature -> Lab Energy
 - Mega Kelvin → A few keV
 - Giga Kelvin → A few MeV
- Find a lab that can produce the right nuclei at the right energy

Welcome to NSCL and FRIB ⁽²⁾

A TORNEY AND A TORNEY

Coupled Cyclotron Facility

Coupled Cyclotron Facility

Current Reach

SuN: β decay, (n, γ)

GRETINA: (d,p) for (<mark>n,γ)</mark>

LEBIT: Masses

Proton Numb

figure by M. Mumpower

NERO: βn values

Facility for Rare Isotope Beams

