In principle, resonances and decaying particles are different entities. Usually,
resonance refers to the energy distribution of the outgoing particles in a scattering
process, and it is characterized by its energy and width. A decaying state is
described in a time dependent setting by its energy and lifetime. Both concepts are

related by TABLE III. Recent theoretical and experimental lifetimes 7
for Nal 3p 2P, and 2P;;, and total line strengths S(3s-3p)
(uncertainties given in parentheses).

h Ref. Method J 7; (ns) S (au)
T . Theoretical
0O — ~ [6] Semiempirical 37.03
F [7] Semiempirical 37.19
[4] RMBPT all orders 37.38(11)
[11] Coupled clusters 37.56%

. . . [3] MCHE-CCP 37.30¢
This relation has been checked in [5] MCHF +CI 37.26°
numerous precision experiments. Experimental

[1] BGLS 1/2  16.40(3) 37.04(7)°
[16] Pulsed laser 1/2  16.35(6) 37.15(14)®
[17] C; analysis 1/2  16.31(6) 37.24(12)°
[18] Linewidth 3/2 16.237(35) 37.30(8)°
This BGLS 1/2  16.299(21) 37.26(5)¢
work 3/2  16.254(22)
i i i *Corrected for relativistic effects (—0.09 a.u.) using the ratio
See more dISC_:USSIOn In between DF and HF values. The(original vaiue of Ref. [3]
R. de la Mad r|d, without relativistic correction 1s 37.39 a.u.
A line strength ratio between the two fine-structure compo-
NUCI . Phys A81 2’ 1 3 (2008) nents of 0.5 :vas assumed 1n the calculation. i

“The ratio of the line strengths of the two fine-structure com-
ponents was determined to 0.50014(44). This 1s in excellent
agreement with the nonrelativistic prediction of 0.5. In the
uncertainty estimate for the ratio all those systematical effects
were omitted which affect both lifetimes in the same way.

U. Volz et al., Phys. Rev. Lett 76, 2862(1996)



A comment on the time scale...

0"1/) - Time Depend

. pendent

ih — Hl/) Schrodinger Equation
ot

T, = ln2§, h=6.58-10" MeV - sec

Can one calculate T with sufficient accuracy using TDSE?

T  =3-10"sec=3babysec .. 9= T1,=10" years
N 256Fm: T,,,=3 hours

For very narrow resonances, explicit time
propagation impossiblel



How do resonances appear? A square well example
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In almost all cases |y | is much larger than |y, |. We are now interested
in those situations where || is as small as possible.
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When c¢,=0, the penetrability becomes proportional to
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This is the semi-classical WKB result;
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Width of a narrow resonance

open closed

y
H()=H,+V(t) (V|<<|H,)) time-dependent Hamiltonian

J n
iha—zj = Hy ...expansion of 1 in the basis of H,

Hyp, = E, 0, ==Y, (p,e""

d Ly,
ih ;" —;cn(t)@k ¢,)e"", o, =(E -E,)/h

As initial conditions, let us assume that at {=0 the system is in the state ¢,
¢ (0)= 1 forn=0
O forn=0
If the perturbation is weak, in the first order, we obtain:

d i, ot
Ck <¢k\V\¢0>e .



Furthermore, if the time variation of V is slow compared with exp(iw,t), we may
treat the matrix element of V as a constant. In this approximation:

<¢k |V|¢0> (1 _ eia)kot)
Ek _Eo

Ck(t) =

The probability for finding the system in state k at time t if it started from state O
at time t=0 is:

The total probability to decay to a group of states within some interval labeled
by f equals:

E‘Ck(t)‘z - h22 f‘<¢k‘vj¢o>‘ (1-coswyt)o(E, )dE,

Wy



The transition probability per unit time is

W= of =2 [ Vi) e p(E, ),

kEf k0

Since the function sin(x)/x oscillates very quickly except for x~0, only small
region around E, can contribute to this integral. In this small energy region we

may regard the matrix element and the state density to be constant. This
finally gives:

Wy s =27n|<¢f‘v|¢0>|2p(Ef) <:[|| Fermi’ s golden rule

Although named after Fermi, most of the work leading to the Golden Rule was done
by Dirac, who formulated an almost identical equation 1927. It is given its name
because Fermi called it "Golden Rule No. 2." in 1950.
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