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In principle, resonances and decaying particles are different entities. Usually, 
resonance refers to the energy distribution of the outgoing particles in a scattering 
process, and it is characterized by its energy and width. A decaying state is 
described in a time dependent setting by its energy and lifetime. Both concepts are 
related by: 

This relation has been checked in  
numerous precision experiments. 

U. Volz et al., Phys. Rev. Lett 76, 2862(1996) 

See more discussion in 
R. de la Madrid,  
Nucl. Phys. A812, 13 (2008) 
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T1/ 2 = ln2 !
Γ
, ! = 6.58 ⋅10−22 MeV ⋅ sec

Can one calculate Γ with sufficient accuracy using TDSE? 

Ts. p. ≈ 3⋅10
−22 sec = 3babysec

For very narrow resonances, explicit time 
propagation impossible! 

A comment on the time scale… 

238U:   T1/2=1016 years 
256Fm: T1/2=3 hours 

  

€ 

i!∂ψ
∂t

= ˆ H ψ Time Dependent 
Schrödinger Equation 



•  square-well potential 
•  spherical symmetry  
•  l=0 (s-wave) 
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χ ' '+ 2M
!2
(E −V )χ = 0 χ =ϕr( )

Radial Schrödinger equation 
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χ I = Asin pr, p2 =
2ME
!2

Region I: 
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χ II = c+e
q(r−a ) + c−e

−q(r−a ), q2 =
2M(Vb − E)
!2

Region II: 
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χ III = c1e
ip(r−b ) + c2e

−ip(r−b )
Region III: 

How do resonances appear? A square well example 



In almost all cases |χIII| is much larger than |χI|. We are now interested 
in those situations where |χIII|  is as small as possible.
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c+ = 0⇒ tan( pa) = −
p
q

defines “virtual” levels in region I: 
particle is well localized; very small 
penetrability through the barrier 

The condition 



When c+=0, the penetrability becomes proportional to 

χ III
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This is the semi-classical WKB result: 
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χ III
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Width of a narrow resonance 

time-dependent Hamiltonian 
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H(t) = H0 +V (t) (V << H0 )
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i!∂ψ
∂t

= ˆ H ψ

ˆ H 0φn = Enφn ⇒ψ = cn (t)
n
∑ φne

− iEnt / !

…expansion of ψ in the basis of Ho 

i! dck
dt

= cn (t)
n
∑ φk V φn e

iωknt, ωkn = Ek −En( ) / !

As initial conditions, let us assume that at t=0 the system is in the state φ0 

cn (0) = 1 for n = 0
0 for n ≠ 0

If the perturbation is weak, in the first order, we obtain:  

i! dck
dt

= φk V φ0 e
iωk 0t

closed open 



Furthermore, if the time variation of V is slow compared with exp(iωkot), we may 
treat the matrix element of V as a constant. In this approximation:  

ck (t) =
φk V φ0
Ek −E0

1− eiωk 0t( )

The probability for finding the system in state k at time t if it started from state 0 
at time t=0 is: 

ck (t)
2
= 2

φk V φ0
2

Ek −E0( )2
1− cosωk0t( )

The total probability to decay to a group of states within some interval labeled 
 by f equals: 

ck (t)
2

k∈ f
∑ =

2
!2

φk V φ0
2

ωk0
2 1− cosωk0t( )∫ ρ Ek( )dEk



The transition probability per unit time is 

W =
d
dt

ck (t)
2

k∈ f
∑ =

2
!2

φk V φ0
2 sinωk0t

ωk0
∫ ρ Ek( )dEk

Since the function sin(x)/x oscillates very quickly except for x~0, only small 
region around E0 can contribute to this integral. In this small energy region we 
may regard the matrix element and the state density to be constant. This 
finally gives: 

W0→ f =
2π
!

φ f V φ0
2
ρ Ef( ) Fermi’s golden rule 

sin x
x−∞

∞

∫ dx = π

Although named after Fermi, most of the work leading to the Golden Rule was done 
by Dirac, who formulated an almost identical equation 1927. It is given its name 
because Fermi called it "Golden Rule No. 2." in 1950. 
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mean lifetime 

E = E0 � i
�
2

; � = �w

half-life 

Γ0→ f = 2π φ f V φ0
2
ρ Ef( )

transition probability W0→ f =
1

T0→ f

=
Γ0→ f

!

Fermi’s golden rule 

uncertainty principle 

normalized amplitude 

c(E) =

Z 1

0
ei(E�E0+i�/2)t/~dt =

i~
E � E0 + i�/2

 (t) =
 (0)

2⇡

Z
c(E)e�iEt/~dE




