Nucleonic Shells

REMINDER: The semi-empirical mass formula, based on the liquid drop model, compared to the data

$$
E_{\text {shell }}=E_{\text {total }}-E_{\mathrm{LD}}
$$

Magic numbers at Z or $\mathrm{N}=2,8,20,28,50,82,126$

REMINDER:

Regularities and periodicities in atoms and nuclei

electronic shells of the atom

Nobel Prize 1922

Bohr's picture still serves as an elucidation of the physical and chemical properties of the elements.

Spherical Harmonic Oscillator

$$
\hat{h}=\hat{t}+\frac{m \omega_{0}^{2} r^{2}}{2} \Rightarrow \varepsilon_{N}=\left(N+\frac{3}{2}\right) \hbar \omega_{0}
$$

For each shell, the allowed orbital angular momenta are:

$$
\ell=N, N-2, \ldots, 1, \text { or } 0, \quad j=\ell \pm \frac{1}{2}
$$

Since each nucleon has an intrinsic spin $\begin{aligned} & \mathrm{s}=1 / 2 \text {, the maximum number of } \\ & \text { nucleons in a HO shell is: }\end{aligned} \quad D_{N}=\sum_{\ell} 2(2 \ell+1)=(N+1)(N+2) \underset{N \gg 1}{\approx}\left(N+\frac{3}{2}\right)^{2}$

The total number of states is:

$$
\sum_{N^{\prime}=0}^{N}\left(N^{\prime}+1\right)\left(N^{\prime}+2\right)=\frac{1}{3}(N+1)(N+2)(N+3)
$$

N	1	DEGEN.	TOTAL	$\underset{N \gg 1}{\approx} \frac{1}{3}(N+2)^{3}$
4	0,2,4	30	70	Dimension of orbits:
3	1,3 0,2	20 12	40 20	$\left\langle r^{2}\right\rangle_{N \ell}=\frac{\hbar}{m \omega_{0}}\left(N+\frac{3}{2}\right)$
1 0	1 0	6 2	8 2	$\Rightarrow \quad \hbar \omega_{0} \approx \frac{41}{A^{1 / 3}}(\mathrm{MeV})$

Spin-orbit potential

Nuclear Configurations in the Spin-Orbit Coupling Model. I. Empirical Evidence

$$
\begin{aligned}
& \text { Maria Goeppert Mayer } \\
& \text { Argonne National Laboratory, Chicago, Illinois } \\
& \text { (Received December 7. 1949) }
\end{aligned}
$$

An extreme one particle model of the nucleus is proposed. The model is based on the succession of energy levels of a single particle in a potential between that of a three-dimensional harmonic oscillator and a
square well. (1) Strong spin orbit coupling leading to inverted doublets is assumed. (2) An even number of identical nucleons are assumed to couple to zero angular momentum, and, (3) an odd number to the angular momentum of the single odd particle. (4) A (negative) pairing energy, increasing with the j value of factorily explained, and all but 1 of the 46 known magnetic moments. The two spin discrepancies are probably due to failure of rule (3). The magnetic moments of the five known odd-odd nuclei are also in agreement with the model. The existence, and region in the periodic table, of nuclear isomerism is correctly
predicted.

$$
\begin{gathered}
V_{\mathrm{SO}} \approx \kappa \vec{\ell} \cdot \vec{s} \\
\langle\vec{\ell} \cdot \vec{s}\rangle=\frac{\hbar^{2}}{2}[j(j+1)-\ell(\ell+1)-s(s+1)] \\
\langle\vec{\ell} \cdot \vec{s}\rangle=\frac{\hbar^{2}}{2}\left\{\begin{array}{l}
\ell \text { for } j=\ell+\frac{1}{2} \\
-(\ell+1) \text { for } j=\ell-\frac{1}{2}
\end{array}\right. \\
\kappa \text { is negative! }
\end{gathered}
$$

The value of spin-orbit strength κ cannot be derived from a simple Thomas precession, as incorrectly stated in Jackson (next slide)

$$
V_{\ell s}=\frac{g}{2 m^{2} c^{2}} \frac{1}{r} \frac{d V}{d r} \vec{\ell} \cdot \vec{s}
$$

orbits with higher angular momentum shifted down!

Jackson, Classical Electrodynamics, Sec. 11.5

In atomic nuclei th specifically nuclear fo weak. In an approx separately in a shor well, $V_{N}(r)$. Then ea interaction given by bution U^{\prime} omitted:
 celerations due to the es are comparatively nucleons as moving attractive, potential addition a spin-orbit ctromagnetic contri-
where the acceleration in ω_{T} is determined by $V_{N}(r)$. The form of ω_{T} is the same as (11.55) with V replaced by V_{N}. Thus the nuclear spin-orbit interaction is approximately

$$
\begin{equation*}
U_{N} \simeq-\frac{1}{2 M^{2} c^{2}} \mathbf{S} \cdot \mathbf{L} \frac{1}{r} \frac{d V_{N}}{d r} \tag{11.58}
\end{equation*}
$$

In comparing (11.58) with atomic formula (11.56) we note that both V and V_{N} are attractive (although V_{N} is much larger), so that the signs of the spin-orbit energies are opposite. This means that in nuclei the single particle levels form "inverted" doublets. With a reasonable form for V_{v}, (11.58) is in qualitative agreement with the observed spin-orbit splittings in nuclei.

