Average one-body Hamiltonian (characteristic features)

- The nucleus is a self-bound system
- The potential is not infinite: the nucleus is an open system
- The potential is self-consistent
- The potential depends on both spin and isospin

Nuclear shell model potential

Shell effects and classical periodic orbits

$\hat{h} \varphi_{\alpha}=\epsilon_{\alpha} \varphi_{\alpha}$

Shells

- Typical time scale: $0.1 z s=$ babyseconds (10^{-22} s)
- Closed orbits and s.p. quantum numbers

$$
\begin{gathered}
g(\varepsilon)=\frac{d N}{d \varepsilon} \quad \text { density of states (number of states per energy interval) } \\
g(\varepsilon)=\tilde{g}(\varepsilon)+\underbrace{\sum_{\gamma} A_{\gamma}(\varepsilon) \cos \left[S_{\gamma}(\varepsilon) / \hbar-\alpha_{\gamma}\right]}_{\begin{array}{c}
\text { smooth } \\
\text { part }
\end{array}} \begin{array}{l}
\begin{array}{l}
\text { oscillating part } \\
\text { (shell effects) }
\end{array} \\
\begin{array}{l}
\text { Trace formula, Gutzwiller, } \\
\text { J. Math. Phys. 8 (1967) } \\
1979
\end{array}
\end{array}\} \begin{array}{l}
\text { The action integral for the periodic (closed) orbit } \gamma
\end{array}
\end{gathered}
$$

Shell effects, degeneracies, and symmetries

Example" Rational Harmonic Oscillator: RHO Phys. Rev. Lett. 68, 154 (1992)

$$
\omega_{i} k_{i}=\tilde{\omega}
$$

RHO explains the presence of superdeformed and cluster configurations in atomic nuclei

XC : Find the relation between magic numbers of spherical HO and superdeformed (2:1) and hyperdeformed (3:1) RHO

Lissajous curves (complex harmonic motion)

$$
\begin{aligned}
& x=A \sin (a t+\delta) \\
& y=B \sin (b t)
\end{aligned}
$$

The appearance of the figure is highly sensitive to the ratio a / b. For $\mathrm{a} / \mathrm{b}=1$, the figure is an ellipse, with special cases including circles ($\mathrm{A}=\mathrm{B}, \delta=\pi / 2$) and lines ($\delta=0$). Another simple Lissajous figure is the parabola ($\mathrm{a} / \mathrm{b}=2$, $\delta=\pi / 4)$. Other ratios produce more complicated curves, which are closed only if a/b is rational.

2D

3D

Pronounced shell structure

(quantum numbers)

HW: Extend the nuclear shell model scheme beyond $Z=82, N=126$. What should be the next neutron and proton magic numbers in superheavy/hyperheavy nuclei?

