Symmetries in quantum mechanics

(see "Symmetry in Physics", J.P. Elliott and P.G. Dawber, The Macmillan Press, London)

- Wave equation for the Hamiltonian operator:

$$
\hat{H} \Psi_{k}=E_{k} \Psi_{k}
$$

- Group of transformations q whose elements G commute with H :

$$
G \hat{H} G^{-1}=\hat{H}
$$

- We say that H is invariant under \mathcal{G} or totally symmetric with respect to the elements of g
- What are the properties of $G \Psi_{k}$?
- If we know the properties of q, we can classify the wave functions
- Further, the same group-theoretical structure will tell us about the spectroscopy of the system

Classification of symmetry groups

Point groups: geometric symmetries that keep at least one point fixed

- D_{1} : (dihedral) reflection group (2 element group: identity and single reflection)
- C_{n} : cyclic n-fold rotation (C_{1} is a trivial group containing identity operation)
Lie groups: continuous transformation groups. Transformations generated by physical operators. The set of commutators between generators is closed. Its Casimir operator commuters with all the generators.
- SO(3): group of rotations in 3D (isomorphic with SU(2))
- Poincare group (Translations, Lorentz transformations)

Vector spaces: Scalars, Vectors, Tensors...

Orthogonal transformations U

- preserve lengths of vectors and angles between them
- map orthonormal bases to orthonormal bases
- Orthogonal transformations in two- or three-dimensional Euclidean space are stiff rotations, reflections, or combinations of a rotation and a reflection (also known as improper rotations).
$\operatorname{det}(U)=1-$ usual (stiff) rotations (scalars, vectors, ...)
$\operatorname{det}(U)=-1-$ improper rotations (pseudo-scalars, axial vectors, ...)

Improper rotation operation S_{4} in CH_{4}

Translational Invariance

$$
\begin{array}{ll}
\vec{r}_{k}^{\prime}=\vec{r}_{k}-\vec{a}=U \vec{r}_{k} U^{-1} & \begin{array}{c}
\text { Unitary transformations: } \\
U^{+}=U^{-1}
\end{array} \\
\vec{p}_{k}^{\prime}=\vec{p}_{k}, \quad \vec{S}_{k}^{\prime}=\vec{S}_{k} & \begin{array}{l}
\text { Under unitary } \\
\text { transformation } U \text { an } \\
\text { operator } A \text { transforms as }
\end{array} \\
U(\vec{a})=\exp \left\{-\frac{i}{\hbar} \vec{a} \vec{P}\right\} \quad \begin{array}{l}
A^{\prime}=U U^{-1}
\end{array} &
\end{array}
$$

- Total momentum (nucleons, mesons, photons, leptons, etc.)
- Transformation generator
$e^{X} Y e^{-X}=Y+[X, Y]+\frac{1}{2!}[X,[X, Y]]+\frac{1}{3!}[X,[X,[X, Y]]]+\cdots$
For $[X, Y]$ central, i.e., commuting with both X and $Y: \quad e^{s X} Y e^{-s X}=Y+s[X, Y]$

Time displacement

$$
U\left(t_{0}\right)=\exp \left\{\frac{i}{\hbar} t_{0} \hat{H}\right\}
$$

Rotations in 3D (space isotropy)

$$
\begin{array}{ll}
R(\vec{\chi})=\exp \{-i \vec{\chi} \vec{J}\} & \vec{\chi} \begin{array}{l}
\text { a set of three angles } \\
\text { (a vector) } \\
\text { representing }
\end{array} \\
{\left[J_{x}, J_{y}\right]=i J_{z} \quad(+\mathrm{cycl} .)} & \begin{array}{l}
\text { rotations along } x, y, z
\end{array}
\end{array}
$$

- Total angular momentum
- Transformation generator
- SO(3) or SU(2) group!

Rotational states of the system labeled by the total angular momentum quantum numbers JM

