Time Reversal symmetry and nuclear reactions

THE STANDARD MODEL OF

FUNDAMENTAL PARTICLES AND INTERACTIONS

FERMIONS $\begin{aligned} & \text { matter oconstituents } \\ & \text { spin }=1 / 2,\end{aligned}$

FERNIONS spin = $1 / 2,3 / 2,5 / 2$,

Lepłons spin =1/2			Quarks spin=1/2		
Flavor	Mass $\mathrm{GeV} / \mathrm{c}^{2}$	Electric charge	Flavor	Approx. Mass $\mathrm{GeV} / \mathrm{c}^{2}$	Electric charge
ν_{L} lightest neutrino* e electron	$\begin{aligned} & (0-2) \times 10^{-9} \\ & 0.000511 \end{aligned}$	0 -1	u up d down	$\begin{aligned} & 0.002 \\ & 0.005 \end{aligned}$	$\begin{array}{r} 2 / 3 \\ -1 / 3 \end{array}$
$\mathcal{V}_{\mathrm{M}} \mathrm{middle}_{\text {neutrino }}^{\text {* }}$ μ muon	$\begin{gathered} (0.009-2) \times 10^{-9} \\ 0.106 \end{gathered}$	$\begin{array}{r} 0 \\ -1 \end{array}$	C charm \mathbf{S} strange	$\begin{aligned} & 1.3 \\ & 0.1 \end{aligned}$	$\begin{array}{r} 2 / 3 \\ -1 / 3 \end{array}$
\mathcal{V}_{H} heaviest neutrino* τ tau	$\begin{gathered} (0.05-2) \times 10^{-9} \\ 1.777 \end{gathered}$	0 -1	t top b bottom	173 4.2	$2 / 3$ $-1 / 3$

Sin is *se tie neutrino paragraph below.
Spin is the intrinsic angular momentum of particles. Spin is given in units of \hbar, which is the quantum unit of angular momentum where $\hbar=\mathrm{h} / 2 \pi=6.58 \times 10^{-25} \mathrm{GeV} \mathrm{s}=1.05 \times 10^{-34} \mathrm{~J}$ s.
Electric charges are given in units of the proton's charge. In SI units the electric charge of the proton
is 1.60×10^{-19} coulombs. is 1.60×10^{-19} coulombs.
The energy unit of particle physics is the electronvolt (eV), the energy gained by one electron in crossing a potential difference of one volt. Masses are given in $\mathrm{GeV} / \mathrm{c}^{2}$ (remember $\mathrm{E}=\mathrm{mc}^{2}$) where $1 \mathrm{GeV}=10^{9} \mathrm{eV}=1.60 \times 10^{-10}$ joule. The mass of the proton is 0.938 Neutrinos
Neutrinos are produced in the sun, supernovae, reactors, accelerator coilisions, and many other processes. Any produced neutrino can be
described ano one of triee neutrino flavor states $\nu_{\text {e }}, v_{\omega}$, or v_{τ}, labelled by the type of charged lepton associated with its production. Each is a defined
quantum mixture of the three definite-mass neutrinos ν, ν_{M}. and ν_{H} for quantum mixture of the three definite-mass neutrinos v_{L}, v_{M}, and v_{H} for
which currently allowed mass ranges are shown in the table. Further which currenily alowed mass ranges are shown in the table. Further
exploration of the properties of neutrinos may yield powerful clues to puzzles about matter and antimatter and the evolution of stars and galaxy structures. Matter and Antimatter
For every particle type there is a corresponding antiparticle type, denoted by a bar over the particle symbol (unless + or - charge is shown). Particle and antiparticle have identical mass and spin but opposite charges. Some electrically neutral bosons (e, $g ., Z^{0}, \gamma$, and $\eta_{c}=c \bar{c}$ but not $\mathrm{K}^{0}=\mathrm{d} \overline{\mathrm{s}}$) are their
own antiparticles. ewn antiparticles.
old

Particle Processes

These diagrams are an artist's conception. Orange shaded areas represent the cloud of gluons.

BOSONS
force carriers spin $=0,1,2$,

Higgs Boson
The Higas boson it aritical component of the Standard Model Its discovery helps conim the mechanism by which fundamental particles get mass.
Color Charge
nily quarks and giuons carry "strong charge" (also called "color charge") and can have stronc

Properties of the Interactions

Property	Gravitational Interaction	Weak Interaction	Electromagnetic ak) Interaction	Strong Interaction
Acts on:	Mass - Energy	Flavor	Electric Charge	Color Charge
Particles experiencing:	All	Quarks, Leptons	Electrically Charged	Quarks, Gluons
Particles mediating:	Graviton (not yet observed)	$\mathbf{w}^{+} \mathbf{w}^{-} \mathbf{z}^{0}$	γ	Gluons
Strength at $\left\{\begin{array}{l}10^{-18} \mathrm{~m} \\ 3 \times 10^{-17} \mathrm{~m}\end{array}\right.$	$\begin{aligned} & 10^{-41} \\ & 10^{-41} \end{aligned}$	$\begin{gathered} 0.8 \\ 10^{-4} \end{gathered}$	1	25 60

particles called hadrons. This continement (binding) results from
exchanges of gluons among the color-charged constituents. As
exchanges of guons among the color-charged constituenis. As
color-charged particles (quarks and gluons) move apart, the energy in the coior-charged partictes (quarks and gluons) move apart, the energy
color-force field between them increases. This energy eventually is converted into addititonal quark-antiquark pairs. The quarks and antiquarks then combine into hadrons; these are the particles seen to emerge.

Two types of hadrons have been observed in nature mesons $q \bar{q}$ and baryons qqq. Among the many types of baryons observed are the proton
(uud), antiproton (ū̄̄), and neutron (udd). Quark charges add in such a (uud), antiproton (ū̄̄$)$, and neutron (udd). Quark charges add in such a
way as to make the proton have charge 1 and the neutron charge 0 . Among way as to make the proton have charge 1 and the neutron charge 0. . Among
the many types of mesons are the pion $\pi^{+}\left(u \overline{\mathrm{a}}\right.$), kaon $\mathrm{K}^{-}(\mathrm{su})$, and $\mathrm{B}^{\mathrm{O}}(\mathrm{d} \overline{\mathrm{b}})$.
Leom more of ParticleAdventure.org

Unsolved Mysteries
Driven by new puzzles in our understanding of the physical world, particle physicists are following paths to new wonders and startling

Why is the Universe Accelerating?

The expansion of the universe appears to be accelerating. Is this due to Einstein's Cosmo-
logical Constant? If not, will experiments logical Constant in inot, wire experimenss
reveal a new force of nature or even extra (hidden) dimensions of space?

Matter and antimatter were created in the Big Bang. Why do we now see only matter except
for the tiny amounts of antimatter that we make in the lab and observe in cosmic rays?
visible forms of matter make up much of the
Invisible forms of matter make up much of the
mass observed in galaxies and clusters of
allaviec. galaxies. Doses this dark matter consist of new
types of particies that interact very weakly galaxies. Does tis sarik mater consist of
types of particles that interact very weakly
with ordinary matter?

What is Dark Matter?

An indication for extra dimensions may be the An indication for exira dimensions may be the
extreme weakness of gravity compared with the
other three fundamental forces (ravaity is so extreme weakness of gravily compared wint the
other three fundamental forces gravity is so
weak that a small magnet can pick up a paper weak that a small magnet can pick up a paper
clip overwhelming Earth's gravity).
©2014 Contemporary Physics Education Project. CPEP is a non-profit organization of teachers, physicists, and educators. Learn more about CPEP products and websites at CPEPphysics.org. Made possible by the generous support of:
U.S. Department of Energy, U.S. National Science Foundation, \& Lawrence Berkeley National Laboratory.

Intrinsic parity

```
PHYSICAL REVIEW
```

VOLUME 88 , NUMBER 1

The Intrinsic Parity of Elementary Particles

G. C. Wick
Carnegie Institute of Technology, Pittsburgh, Pennsylvania

AND

A. S. Wightman and E. P. Wigner Princeton University, Princeton, New Jersey
(Received June 16, 1952)

Abstract

The limitations to the concept of parity of quantum-mechanical states and, in particular, of intrinsic parity of elementary particles are discussed. These limitations are shown to follow from "superselection rules," i.e., from restrictions on the nature and scope of possible measurements. The existence of such superselection rules is proved for the case of spinor fields; it is also conjectured that a superselection rule operates between states of different total charge.

- Parity is a multiplicative quantum number $\quad \mathcal{P}_{12}=\mathcal{P}_{1} \mathcal{P}_{2}(-1)^{L_{12}}$
- Quarks have intrinsic parity +1
- The lighter baryons (qqq) have positive intrinsic parity. What about light antibaryons?
- What about mesons?

In 1954, Chinowsky and Steinberger demonstrated that the pion has negative parity (is a pseudoscalar particle)

Charge conjugation

\boldsymbol{e} - interchanges particles \& antiparticles
It reverses all the internal quantum numbers such as charge, lepton number, baryon number, and strangeness. It does not affect mass, energy, momentum or spin.

$$
\mathcal{C}|\psi\rangle=|\bar{\psi}\rangle \quad \mathcal{C}^{2}=1
$$

What are the eigenstates of charge conjugation?

$$
\mathcal{C}|\psi\rangle=\eta_{C}|\psi\rangle \Rightarrow \eta_{C}= \pm 1
$$

C-parity or charge parity
\Rightarrow photon, neutral pion...
What about positronium, neutrino?

- Maxwell equations are invariant under \mathcal{C}
- \mathcal{C} reverses the electric field
- Photon has charge parity $\eta_{\mathrm{C}}=-1$

$$
\pi_{0} \rightarrow \gamma+\gamma \Rightarrow \eta_{C}\left(\pi_{0}\right)=1
$$

- Is the following decay possible?

$$
\pi_{0} \rightarrow \gamma+\gamma+\gamma
$$

http://pdg.lbl.gov/2016/tables/contents_tables.html

Other Symmetries

$\mathcal{C P}$ - violated in K^{0} decay (1964 Cronin \& Fitch experiment)

$$
K_{2}^{0} \rightarrow \pi^{+}+\pi^{-}
$$

Volume 13, Number 4
PHYSICAL REVIEW LETTERS
27 July 1964

```
            EVIDENCE FOR THE 2 }\pi\mathrm{ DECAY OF THE K K}\mp@subsup{}{2}{0}\mathrm{ MESON* }
J. H. Christenson, J. W. Cronin, }\ddagger\mathrm{ V. L. Fitch, }\ddagger\mathrm{ and R. Turlay §
    Princeton University, Princeton, New Jersey
                        (Received 10 July 1964)
```


CP7- follows from relativistic invariance

The CPT theorem appeared for the first time in the work of Julian Schwinger in 1951 to prove the connection between spin and statistics. In 1954, Lüders and Pauli derived more explicit proofs. At about the same time, and independently, this theorem was also proved by John Stewart Bell. These proofs are based on the principle of Lorentz invariance and the principle of locality in the interaction of quantum fields.

Since $\mathcal{C P}$ is violated, 7 has to be violated as well!

HW3: Using information from PDG.lbl.gov and nndc.bnl.gov determine whether the following decays/reactions are allowed by fundamental symmetries:
a. $\quad \pi^{0} \rightarrow \mu^{-}+\mathrm{e}^{+}$
b. $\mathrm{e}+\overline{\mathrm{e}} \longrightarrow \gamma$
c. Gamma decay of excited state of ${ }^{40} \mathrm{Ca}$ at 3353 keV
d. Decay of meson $\eta \longrightarrow \gamma+\pi^{0}$
e. Decay of meson $\eta \rightarrow \pi^{0}+\pi^{0}+\pi^{0}$

