$$P = \frac{\left|\chi_{III}\right|^2}{\left|\chi_I\right|^2} \propto \exp\left[-2\int_{r_1}^{r_2} k(r) dr\right] \qquad T \propto \frac{1}{P}$$

In the case of the Coulomb barrier, the above integral can be evaluated exactly.

$$\log T = a + \frac{b}{\sqrt{Q_{\alpha}}}$$

Geiger-Nuttall law of alpha decay 1911

EC10: For the Coulomb barrier above, derive the Geiger-Nuttall law. Assume that the energy of an alpha particle is $E=Q_{\alpha}$, and that the outer turning point is much greater than the potential radius.

Phys. Lett. B 734 203 (2014)

One still has to consider:

- alpha-particle formation
- angular momentum of alpha particle (centrifugal barrier effect)

Superheavy element alpha decays

Phys. Rev. C 87, 054621 (2013)

Superheavy element alpha decays

Phys. Rev. C 87, 054621 (2013)

Superallowed alpha decays

Proton emitters

Proton emission

The landscape of two-proton radioactivity

E. Olsen et al,

PRL 111, 139903 (2013); E: PRL 111, 139903 (2013)

Energy - angle 2D correlation

3-body model prediction

Experiment