Beta decay: axial vector coupling constant

The operators that are scalars, pseudoscalars and tensors produce leptons of both helicities under a parity transformation. Only vector operators V and axial vector operators A can accommodate the observed result. Furthermore, since V and A are of different parity, they must appear in a linear combination. This leads to the $V-A$ theory of beta decay. In principle, both V and A parts should be characterized by different coupling constants, G_{V} and G_{A}, respectively. In this theory, the weak interaction acts only on left-handed particles (and righthanded antiparticles). Since the mirror reflection of a left-handed particle is right-handed, this explains the maximal violation of parity.

The vector current is known to be a conserved quantity (CVC hypothesis)
How to relate G_{V} and G_{A} ?

Experimentally, $g_{A}=1.267(4)$. This value is very close, up to 3%, to the GoldbergerTreiman estimate. This relation can be obtained by assuming the so-called partially conserved axial-vector current (PCAC) hypothesis.

Now we are ready to estimate the nuclear operator!

Beta decay: nuclear matrix elements

$$
V_{\mathrm{int}} \approx g \delta\left(\vec{r}_{n}-\vec{r}_{p}\right) \delta\left(\vec{r}_{n}-\vec{r}_{e^{-}}\right) \delta\left(\vec{r}_{n}-\vec{r}_{\bar{v}}\right) \hat{O}(n \rightarrow p) \quad \text { zero-range }
$$

The nuclear operator transforming a neutron into a proton must be one body in nature. Hence it must involve the isospin raising or lowering operators.
In the non-relativistic limit, the vector part may be represented by the unity operator times $\tau_{ \pm}$and the axial-vector part by a product of $\tau_{ \pm}$and σ. (A proper derivation requires manipulation with Dirac 4-component functions and γ matrices!)

Fermi decay, carries zero angular momentum

Gamow-Teller decay, carries one unit of angular momentum
G_{V} determined from superallowed Fermi beta decays!

From the expression for $f T$, it is possible to determine the strength g of the beta-decay process, if one knows how to determine the reduced matrix element. For superallowed $0^{+} \rightarrow 0^{+}$Fermi transitions, the matrix element is V 2 so the $f T$ values should be identical.

Superallowed $0+\rightarrow 0+$ beta decay between $\mathrm{T}=1$ analog states
corrected for nuclear structure effects (isospin mixing) and radiative corrections

$\| \square g=0.88 \times 10^{-4} \mathrm{MeV} \mathrm{fm}^{3}$
or, introducing the dimensionless constant $G: \quad G=g \frac{m_{e}^{2} c}{\hbar}=1.026 \times 10^{-5}$

Superallowed Fermi $0^{+} \rightarrow 0^{+} \beta$-decay studies

Impressive experimental effort worldwide

Hardy and Towner survey (Feb. 2015)
http://journals.aps.org/prc/abstract/10.1103/PhysRevC.91.025501

Kobayashi and Maskawa (2008): ... for "the discovery of the origin of broken symmetry, which predicts the existence of at least three families of quarks in nature."

Beta decay: allowed transitions

Fermi transitions

$$
\left\langle J_{f} M_{f} T_{f} T_{0 f}\right| T_{\mp}\left|J_{i} M_{i} T_{i} T_{0 i}\right\rangle=\sqrt{T_{i}\left(T_{i}+1\right)-T_{0 i}\left(T_{0 i} \mp 1\right)} \delta_{J_{i} J_{f}} \delta_{M_{i} M_{f}} \delta_{T_{i} T_{f}} \delta_{T_{0 i} \mp T_{0 f}}
$$

In reality, isospin is violated by the electromagnetic force, but the violation is weak.

$$
\begin{array}{ll}
J_{f}=J_{i} & (\Delta J=0) \\
T_{f}=T_{i} \neq 0 & \left(\Delta T=0, \text { but } T_{i}=0 \rightarrow T_{f}=0 \text { forbidden }\right) \\
T_{0 f}=T_{0 i} \mp 1 & \left(\Delta T_{0}=1\right) \\
\Delta \pi=0 & \text { no parity change }
\end{array}
$$

$$
f T=\frac{\text { const }}{\langle F\rangle^{2}+g_{A}^{2}\langle G T\rangle^{2}}
$$

Gamow-Teller transitions

The matrix element strongly depends on the structure of the wave function!

$$
\begin{array}{ll}
\Delta J=0,1 & \text { but } J_{i}=0 \rightarrow J_{f}=0 \text { forbidden } \\
\Delta T=0,1 & \text { but } T_{i}=0 \rightarrow T_{f}=0 \text { forbidden } \\
T_{0 f}=T_{0 i} \mp 1 & \left(\Delta T_{0}=1\right) \\
\Delta \pi=0 & \text { no parity change }
\end{array}
$$

The absolute values of GT matrix elements are generally smaller than those for Fermi transitions.

Superallowed Gamow-Teller decay of the doubly magic nucleus ${ }^{100}$ Sn

Hinke et al., Nature 486, 341 (2012)

Number distribution of $\log (f t)$ values for allowed β-transitions (obeying the selection rules).

Forbidden transitions

Forbidden transitions involve parity change and a spin change of more than one unit. They come from the higher-order terms in the expansion of electron and neutrino plane waves into spherical harmonics. Forbidden decays are classified into different groups by the L-value of the spherical harmonics involved.

Decay type	ΔJ	ΔT	$\Delta \pi$	$\log _{10} f t_{1 / 2}$
Superallowed	$0^{+} \rightarrow 0^{+}$	0	no	$3.1-3.6$
Allowed	0,1	0,1	no	$2.9-10$
First forbidden	$0,1,2$	0,1	yes	$5-19$
Second forbidden	$1,2,3$	0,1	no	$10-18$
Third forbidden	$2,3,4$	0,1	yes	$17-22$
Fourth forbidden	$3,4,5$	0,1	no	$22-24$

$7 / 2^{+}$to $11 / 2^{-}$is a First-Forbidden Beta Decay	
$7 / 2^{+} 30.07 \mathrm{y}$	
513.94 keV94.4% $\begin{array}{r}\text { isomeric state } \\ 11 / 2^{-} 2.552 \mathrm{~m}\end{array}$	
	$\begin{array}{l}\text { 661.66 keV } \\ \text { M4 gamma ray }\end{array}$ $3 / 2 \cdot$
${ }^{137} \mathrm{Cs}$	${ }^{137} \mathrm{Ba}$

Systematic Uncertainties in the Analysis of the Reactor Neutrino Anomaly A. Hayes et al., PRL 112, 202501 (2014)
"...the corrections are nuclear-operator dependent and that an undetermined combination of matrix elements contributes to non-unique forbidden transitions."

Also: r-process simulations....

Beta decay: electron capture

Electron capture leads to a vacancy being created in one of the strongest bound atomic states, and secondary processes are observed such as the emission of X-rays and Auger electrons. Auger electrons are electrons emitted from one of the outer electron shells and take away some of the remaining energy.

Capture is most likely for a 1 s -state electron. The K-electron wave function at the origin is maximal and is given by

$$
\psi_{e^{-}}(0)=\frac{1}{\sqrt{\pi}}\left(\frac{Z m_{e} e^{2}}{\hbar^{2}}\right)^{3 / 2}
$$

The electron capture probability is thus given by:

$$
\mathcal{W}_{E C}=E_{v}^{2} \frac{\left|M_{f i}^{\prime}\right|^{2} g^{2}}{\pi^{2} \hbar^{4} c^{3}}\left(\frac{Z m_{e} e^{2}}{\hbar^{2}}\right)^{3}
$$

Example $\quad{ }_{4}^{7} \mathrm{Be}+\mathrm{e}^{-} \rightarrow{ }_{3}^{7} \mathrm{Li}+\nu_{e} \quad \underline{\text { http://www.nndc.bnl.gov/chart/reCenter.jsp?z=4\&n=3 }}$
Manipulating lifetimes in storage rings: http://www.sciencedirect.com/science/article/pii/S0146641013000744

Decay constants for β_{c}^{+}, EC decays and atomic losses for bare, H -like, He-like and neutral ${ }^{140} \mathrm{Pr}$ and ${ }^{142} \mathrm{Pm}$ ions together with the half-lives $T_{1 / 2}$ derived from time-resolved Schottky spectrometry.						
Ion	$\lambda_{\beta^{+}}\left(\mathrm{s}^{-1}\right) \cdot 10^{-3}$	$\lambda_{E C}\left(\mathrm{~s}^{-1}\right) \cdot 10^{-3}$	$\lambda_{\text {loss }}\left(\mathrm{s}^{-1}\right) \cdot 10^{-3}$	$\lambda_{\beta^{+}}+\lambda_{E C}\left(\mathrm{~s}^{-1}\right) \cdot 10^{-3}$	$\mathrm{T}_{1 / 2}$ (s)	Ref.
${ }^{140} \mathrm{Pr}^{59+}$	1.58(8)	-	0.4(1)	1.58(8)	439(22)	[155]
${ }^{140} \mathrm{Pr}^{58+}$	1.61(10)	2.19(6)	$0.4(1)$	3.80(12)	182(6)	[155]
${ }^{140} \mathrm{Pr}^{57+}$	1.54(11)	1.47(7)	0.4(1)	3.01(13)	230(10)	[155]
${ }^{140} \mathrm{Pr}^{0+}$	1.74(5)	1.65(5)	(1)	3.39(7)	203(4)	[217,227]
${ }^{142} \mathrm{Pm}^{61+}$	12.3(7)	-	0.5(1)	12.3(7)	56.4(32)	[157]
${ }^{142} \mathrm{Pm}^{60+}$	12.6(3)	5.1(1)	0.5(1)	17.7(3)	39.2(7)	[157]
${ }^{142} \mathrm{Pm}^{59+}$	13.9(6)	3.6(1)	0.5(1)	17.5(6)	39.6(14)	[157]
${ }^{142} \mathrm{Pm}^{0+}$	13.2(5)	3.9(5)	-	17.1 (7)	40.5(17)	[217,227$]$

