Mesons

quark wave function of the pion

Consider $\pi^{-}\left(t=1\right.$ and $\left.t_{0}=1\right)$. The only possible combination is

$$
\left|\pi^{-}\right\rangle=|\bar{u} d\rangle
$$

In general, it is possible to find several linearly independent components corresponding to the same t and t_{0}. The appropriate combination is given by isospin coupling rules. Furthermore, the wave function must be antisymmetric among the quarks. This problem is similar to that of a two-nucleon wave function!
$T=1$ triplet:

$$
\begin{aligned}
& \left|\pi^{0}\right\rangle=\frac{1}{\sqrt{2}} \tau_{-}\left|\pi^{-}\right\rangle=\frac{1}{\sqrt{2}}(|u \bar{u}\rangle-|d \bar{d}\rangle) \\
& \left|\pi^{+}\right\rangle=-|u \bar{d}\rangle
\end{aligned}
$$

What about the symmetric combination?
$T=0$ singlet: $\quad\left|\eta_{0}\right\rangle=\frac{1}{\sqrt{2}}(|u \bar{u}\rangle+|d \bar{d}\rangle)$

To produce heavier mesons we have to introduce excitations in the quark-antiquark system or invoke s - and other more massive quarks

The Eightfold Way is a term coined by Murray Gell-Mann for a theory organizing baryons and mesons into octets (alluding to the Noble Eightfold Path of Buddhism). The Eightfold Way is a consequence of flavor symmetry. Since the strong nuclear force affects quarks the same way regardless of their flavor, replacing one flavor of quark with another in a hadron should not alter its mass very much. Mathematically, this replacement may be described by elements of the $\operatorname{SU}(3)$ group. The octets and other arrangements are representations of this group.

The Dharma wheel (represents the Noble Eightfold Path)

The lightest strange mesons are kaons or K-mesons. Since s-quark has zero isospin, kaons come in two doublets with $t=1 / 2$:

$$
\begin{aligned}
& \left\{K^{+}(u \bar{s}), K^{0}(d \bar{s})\right\}, \quad\left\{K^{-}(\bar{u} s), \bar{K}^{0}(\overline{d s})\right\} \\
& Y=\mathcal{A}+S+C+\mathscr{B}+\mathcal{T} \quad \text { hypercharge } \\
& Q=-t_{0}+\frac{1}{2} Y \quad \text { the } S U(3) \text { symmetry limit is met for massless u,d,s quar } \\
& \pi^{-}(\bar{u} d)+p(u u d) \rightarrow K^{0}(d \bar{s})+\Lambda(u d s) \quad \text { strangeness is conserved! } \\
& \text { Pseudoscalar mesons } \\
& \vec{J}=\vec{\ell}+\vec{S}, \quad \vec{S}=\vec{S}_{q}+\vec{S}_{\bar{q}} \quad
\end{aligned} \begin{aligned}
& \vec{J} \text { total angular momentum } \\
&
\end{aligned}
$$

S can be either 0 or 1 . The mesons with the relative zero orbital angular momentum are lower in energy. For the pion, $S=0$, hence $J=0$. Consequently, pions are "scalar" particles. But what about their parity? The parity of the pion is a product of intrinsic parities of the quark (+1), antiquark (-1) and the parity of the spatial wave function is +1 . Hence, the pion has negative parity: it is a pseudoscalar meson.

With (u, d, s) quarks, one can construct 9 pseudoscalar mesons (recall our earlier discussion about the number of gluons!):

$$
9 \text { (nonet)=8 (octet)+1 (singlet) }
$$

Members of the octet transform into each other under rotations in flavor space (SU(3) group!). The remaining meson, η_{0}, forms a 1 -dim irrep.

$$
\begin{aligned}
& \left|\pi^{0}\right\rangle=\frac{1}{\sqrt{2}}(|u \bar{u}\rangle-|d \bar{d}\rangle) \\
& \left|\eta_{8}\right\rangle=\frac{1}{\sqrt{6}}(|u \bar{u}\rangle+|d \bar{d}\rangle-2|s \bar{s}\rangle) \\
& \left|\eta_{0}\right\rangle=\frac{1}{\sqrt{3}}(|u \bar{u}\rangle+|d \bar{d}\rangle+|s \bar{s}\rangle)
\end{aligned}
$$

In reality, since the SU_{3} (flavor) symmetry is not exact one, the observed mesons are:

$$
\eta=\eta_{8} \cos \vartheta+\eta_{0} \sin \vartheta \quad \eta^{\prime}=-\eta_{8} \sin \vartheta+\eta_{0} \cos \vartheta
$$

ϑ - Cabibbo angle, $\sim 11^{\circ}$ for pseudoscalar mesons

CP violation in Kaon decays

$$
\begin{gathered}
\left|K^{0}\right\rangle=|d \bar{s}\rangle \quad\left|\overline{K^{0}}\right\rangle=|s \bar{d}\rangle \quad(Q=0) \\
\mathcal{C}\left|K^{0}\right\rangle=\left|\overline{K^{0}}\right\rangle \quad \mathcal{P}\left|K^{0}\right\rangle=-\left|K^{0}\right\rangle \\
\mathcal{C}\left|\overline{K^{0}}\right\rangle=\left|K^{0}\right\rangle \quad \mathcal{P}\left|\overline{K^{0}}\right\rangle=-\left|\overline{K^{0}}\right\rangle \\
\mathcal{C P}\left|K^{0}\right\rangle=-\left|\overline{K^{0}}\right\rangle \quad \begin{array}{l}
\text { Hmmm...Those are }
\end{array} \\
\mathcal{C P}\left|\overline{K^{0}}\right\rangle=-\left|K^{0}\right\rangle \quad \begin{array}{l}
\text { not CP eigenstates }
\end{array} \\
\left|K_{L}^{0}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|K^{0}\right\rangle+\left|\overline{K^{0}}\right\rangle\right) \quad \begin{array}{c}
\left|K_{S}^{0}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|K^{0}\right\rangle-\left|\overline{K^{0}}\right\rangle\right) \\
\text { Long } \\
\mathcal{C P}\left|K_{L}^{0}\right\rangle=-\left|K_{L}^{0}\right\rangle \\
\mathcal{C P}\left|K_{S}^{0}\right\rangle=+\left|K_{S}^{0}\right\rangle
\end{array}
\end{gathered}
$$

The main decay modes of K_{S} are: $K_{S} \rightarrow \pi^{+}+\pi^{-}$or $\pi^{0}{ }^{31 \%}+\pi^{0}$
... and both decays conserve CP. What about K_{L} ?

$$
\begin{array}{r}
K_{L} \rightarrow \pi^{+}+\pi^{-}+\pi^{0} \\
\pi^{0}+\pi^{0}+\pi^{0} \\
\pi^{ \pm}+e^{\mp}+\nu_{e} \\
\pi^{ \pm}+\mu^{\mp}+\nu_{\mu}
\end{array}
$$

These decays are called semileptonic decays, producing one meson and two leptons. They account for about 67% of K_{L} decays compared to 33% for the 3π mode.

Three-body decay, very slow!

$$
\begin{aligned}
& \mathrm{T}\left(K_{S}\right)=(8.954 \pm 0.004) \times 10^{-11} \mathrm{~s} \\
& \mathrm{~T}\left(K_{L}\right)=(5.116 \pm 0.021) \times 10^{-8} \mathrm{~s}
\end{aligned}
$$

Cronin \& Fitch experiment, 1964
17 m beamline; K_{s} should not be observable more than $\sim 1 \mathrm{~m}$ down the beam line

Given the disparity of the lifetimes of the two kaon species, you expect to see only the long-lived version at the end of the beam tube, but they found about 1 in 500 decays to be 2-pion decays, characteristic of the short-lived species.

The Nobel Prize in Physics 1980

James Watson Cronin

Val Logsdon Fitch
Prize share: $1 / 2$

Prize share: 1/2

The Nobel Prize in Physics 1980 was awarded jointly to James Watson Cronin and Val Logsdon Fitch "for the discovery of violations of fundamental symmetry principles in the decay of neutral K-mesons"

Vector mesons

Here $S=1$, hence $J=1$. They have negative parity. The vector mesons are more massive than their pseudoscalar counterparts, reflecting the differences in the interaction between a quark and an antiquark in the $S=0$ and $S=1$ states.

$$
\begin{aligned}
& \left|\rho^{0}\right\rangle=\frac{1}{\sqrt{2}}(|u \bar{u}\rangle-|d \bar{d}\rangle) \\
& |\omega\rangle=\frac{1}{\sqrt{2}}(|u \bar{u}\rangle+|d \bar{d}\rangle) \\
& |\varphi\rangle=|s \bar{s}\rangle
\end{aligned}
$$

Flux tubes and confinement

Lattice "measurement" of the quenched static potential

Phys. Rev. D 51, 5165 (1995)

The origin of the linear potential between quarks may be traced to the flux tube: a string of gluon energy density between the quark pair. The QCD vacuum acts like a dual superconductor, which squeezes the color electric field to a minimal geometrical configuration, a narrow tube. It costs energy for the flux to spread out in space. The tube roughly has a constant cross section and with constant energy density. Because of this, the energy stored in the flux increases linearly with the length of the flux.

Quarks do not exist in isolation. Attempts to separate quarks from one another require huge amounts of energy and results in the production of new quarkantiquark pairs.

The theory of the strong interaction predicts the existence of glueballsparticles that consist only of gluons (above), and so-called hybrids composed of two quarks and a gluon (below).

