Brief History of Nuclear Physics

- 1896: discovery of radioactivity by Becquerel (α . β rays)
- 1898: separation of Radium by Maria and Pierre Curie
- 1900: gamma rays discovered by Villard
- 1902: Rutherford and Soddy identified the phenomenon of radioactive half-life
- 1909: alpha-particle experiment by Rutherford, Geiger and Marsden
- 1911: nucleus as a central part of an atom Rutherford

beta-decay spectrum is continuous (Meitner, Hahn, Danysz, Chadwick)

- 1913: Soddy and Richards elucidate the concept of nuclear mass: isotopes are born
- 1917: Rutherford carries out first transmutation (He+N \rightarrow p+O); discovers the proton
- 1921: discovery of nuclear isomerism by Hahn (^{234m}Pa)
- 1923: Georg von Hevesy uses radioactive tracers in biology
- 1928: theory of alpha decay by Gamow
- 1929: cyclotron (Ernest Lawrence); Rasetti discovers spin J=1 for ¹⁴N

1930: Pauli: neutrino; Dirac: antimatter; Chandrasekhar: limit for the white dwarf mass

- 1932: discovery of the neutron by Chadwick; discovery of positrons by Anderson
- 1934: Fermi theory of beta decay; Baade and Zwicky predict neutron stars
- 1935: nuclear (strong) force through meson exchange Yukawa
- 1936: John Lawrence treats leukemia with ³²P

1938: stars are powered by nuclear fusion (Gamow, von Weizsäcker, Bethe): pp, CNO

1939: nuclear fission (Hahn, Strassman, Meitner, Frisch); Bohr, Wheeler explain fission

1940: McMillan and Abelson produce a new element $(n+^{238}U \rightarrow ^{239}U \rightarrow ^{239}Np \rightarrow ^{239}Pu)$ 1942: first self-sustaining fission reaction (Fermi); Manhattan project (Oppenheimer) 1946: Carbon-14 dating was proposed by Libby

1947: pi meson discovered in Bristol (by studying cosmic ray tracks)

1948: Big Bang nucleosynthesis (Alpher, Bethe, Gamow)

Electricity generated at the X-10 Graphite Reactor in Oak Ridge

- 1949: nuclear shell model (Mayer, Jensen)
- 1951: nuclear collective model (Bohr, Mottelson, Rainwater)
- 1952: hydrogen bomb (Teller, Ulam); Hoyle resonance predicted
- 1954: proton therapy at Berkeley
- 1956: experimental evidence for antineutrino (Reines, Cowan)
 - prediction and discovery of parity violation (Lee, Yang, Wu)
- 1957: stellar nucleosynthesis (Burbidge, Burbidge, Fowler, Hoyle)
 - V-A Lagrangian for weak interactions by Marshak and Sudarshan
- 1958: nuclear superconductivity (Bohr, Mottelson, Pines)
- 1961: first positron emission tomography (PET) scan at Brookhaven
- 1962: muon neutrino discovered by Lederman
- 1964: quarks proposed (Gell-Mann, Zweig); Higgs boson proposed (Higgs, Englert,+4)
- 1967: discovery of neutron stars (Hewish, Shklovsky, Bell)
- 1969: intrinsic structure of the proton (SLAC)
- 1972: color charge and quantum chromodynamics (Fritsch, Gell-Mann)
- 1977: The first MRI scan of a human is made

- 1978: discovery of the gluon by PLUTO detector at DESY; gluon has S=1.
- 1982: chiral symmetry on the lattice (Ginsparg, Wilson)
- 1983: discovery of W and Z intermediate vector bosons (CERN)
- 1995: top quark discovered (Fermilab)
- 2001: neutrino oscillations (Super-Kamiokande, SNO)
- 2002: element Z=118 produced in Dubna
- 2005: quark-gluon liquid of very low viscosity discovered at RHIC
- 2010: antihydrogen trapped in CERN
- 2012: Higgs boson discovered at CERN; Daya Bay measures neutrino mixing angle θ_{13}
- 2015: pentaquarks discovered at LHCb
- 2016: element Og (Z=118) added to the Periodic Table
- 2017: Gravitational wave GW170817 and a kilonova detected; r-process site established

HW#1: What milestones would you add to the "Brief History of Nuclear Physics" list? (The more the merrier)

Ernest and John Lawrence

John Lawrence was a physicist and physician, a pioneer of nuclear medicine. He discovered treatments for leukemia and polycythemia by injecting infected mice with radioactive phosphorus derived from the cyclotron invented by his brother

In the summer of 1935, John came to Berkeley to conduct research on the medical applications of radiation. He injected some leukemic mice with radioactive phosphorus produced by the cyclotron and then went fishing; when he returned he found the mice improved. It was the beginning of medical physics at Berkeley. John was also more aware than were the physicists in the laboratory of the dangers of exposure to radiation, so he insisted that they undertake some experiments with the radiation produced by the cyclotron. He conducted an experiment that he described, years later, in this way:

One of the first animals that we exposed - I'm not sure that it wasn't the first one - we ... placed within the cyclotron between the two poles of the magnet near the beryllium target which was being struck with alpha particles. So Paul and I told Ernest to turn off the cyclotron because we wanted to go back and see how the rat was. Well, the rat was dead. That scared everybody because it had only been exposed for about a minute and the dose was very low. We were very scared and we then recommended increasing the shielding around the cyclotron. *Later we found that the rat died of suffocation but not radiation.*

None of these achievements however was as important and satisfying as that which occurred in 1937. Within months of John's arrival in Berkeley, he and Ernest learned that their mother was diagnosed with uterine cancer; she went to the Mayo Clinic for treatment. John went to Mayo immediately. Mother Lawrence was told that she had only three months to live. John tells the story in his oral history, in the archives at Berkeley:

So then I got on the phone with Ernest. I said, "They don't want to treat her here with radiation. How about my bringing her out and we'll talk to Dr. Stone?" We did talk to Dr. Stone and he said, "Sure, I'll take her." So I took her on the train, wheeled her across the station in Omaha. (...) She was about 67 or 68 years old then.... They started treating her through four fields.... To make a long story short, this massive tumor just started evaporating. At the end of ten years my mother finally agreed that she must be cured. It took me about ten years to convince her and she died at 83 and had the best years of her life.... It was really, really a fantastic result. Four elements earn permanent seats on the periodic table IUPAC announces the names of the elements 113, 115, 117, and 118 (11/30/2016)

- Nihonium and symbol Nh, for the element 113
- Moscovium and symbol Mc, for the element 115
- Tennessine and symbol Ts, for the element 117
- Oganesson and symbol Og, for the element 118

1															18		
1]	IUPAC Periodic Table of the Elements															2
H					•							•					He
hydrogen	2		Kenn									13	14	15	16	17	helium
[1.007, 1.009]	4	I	Key:	her								5	6	7	0	0	4.003
, °	P-	Symbol										D D	ĉ	l Á	å	9	NIa
LI	Be		Symp									B	carbon	N	U ONVOOD	fluorine	ine
[6.938, 6.997]	9.012		standard atomic	weight								[10.80, 10.83]	[12.00, 12.02]	[14.00, 14.01]	[15.99, 16.00]	19.00	20.18
11	12											13	14	15	16	17	18
Na	Ma											AI	Si	Р	S	CI	Ar
sodium	magnesium			-		-			10		10	aluminium	silicon	phosphorus	sulfur	chlorine	argon
22.99	[24.30, 24.31]	3	4	5	6	/	8	9	10	11	12	26.98	[28.08, 28.09]	30.97	[32.05, 32.08]	[35.44, 35.46]	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
potassium	calcium	scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic 74.02	selenium	bromine	krypton
35.10	40.00	30	47.07	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Ph	C.	v	7.	Nh	Mo	To	D.	Dh	Dd	۸a	60	In	Sn	Ch	To	1	Vo
rubidium	strontium	vttrium	zirconium	niobium	molybdenum	technetium	nuthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
85.47	87.62	88.91	91.22	92.91	95.96(2)		101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	lanthanoids	Hf	Та	W	Re	Os	Ir	Pt	Au	Hq	TI	Pb	Bi	Po	At	Rn
caesium	barium		hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
132.9	137.3		178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	[204.3, 204.4]	207.2	209.0			
87	88	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	actinoids	Rt	Db	Sg	Bh	HS	Mt	Ds	Rg	Cn	Nn	FI	IVIC	LV	IS	Og
trancium	radium		rumertordium	dubnium	seaborgium	bonrium	nassium	meimerium	darmstadtum	roentgenium	copernicium	ninonium	tierovium	moscovium	livermorium	tennessine	oganesson
L	-		i														
			1														T
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
		lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium	
		130.9	140.1	140.9	144.2		150.4	152.0	157.5	100.9	102.5	104.9	107.3	100.9	173.1	175.0	1
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
		actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium	
			232.0	231.0	238.0												