Relativistic Heavy Ion Collisions

II. Facilities and Experiments
III. Modeling and Phenomenology

Theory Basics

As you heat the vacuum...
Density depends only on T

$$
\rho_{\text {hadrons }}=\sum_{\alpha}\left(2 S_{\alpha}+1\right) \int \frac{d^{3} p}{(2 \pi \hbar)^{3}} \frac{e^{-E_{p} / T}}{1 \mp e^{-E_{p} / T}}
$$

When $T \geqslant 165 \mathrm{MeV}, \rho \geqslant 1 / V_{\text {hadron }}$ and quarks are confused For T>>165 MeV,

$$
\rho_{\text {partons }}=\sum_{\substack{a \\ \text { partons }=\mathrm{u}, \mathrm{~d}, \mathrm{~s}, \text { gluons (56 deg.s of freedom) }}}\left(2 S_{a}+1\right) \int \frac{d^{3} p}{(2 \pi \hbar)^{3}} \frac{e^{-E_{p} / T}}{1 \mp e^{-E_{p} / T}}
$$

Theory Basics

For $\mathrm{T} \gtrsim 165 \mathrm{MeV}$,

- Create QGP (Quark Gluon Plasma)
- Restore Chiral Symmetry
- Symmetry related to ~massless quarks
- Dissolve quark-antiquark condensate

Lattice Gauge Theory

Integrate over field configurations $\rightarrow>$ Partition function

$$
\begin{aligned}
Z(\beta & =1 / T)=\sum_{i}\langle i| e^{-\beta H}|i\rangle \\
& =\sum_{i_{1} \cdots i_{N}}\left\langle i_{1}\right| e^{-\delta \beta H}\left|i_{2}\right\rangle\left\langle i_{2}\right| e^{-\delta \beta H} \cdots\left|i_{N}\right\rangle\left\langle i_{N}\right| e^{-\delta \beta H}\left|i_{1}\right\rangle, \quad \delta \beta=\beta / N
\end{aligned}
$$

Change basis to "fields"

$\left.|\phi\rangle=\exp \left\{i \phi a-\phi^{*} a^{\dagger}\right)\right\}|0\rangle, \phi=p+i q$
$\sum_{i}|i\rangle\langle i| \rightarrow \int d p d q|\phi\rangle\langle\phi|$
$\langle\phi(t) \mid \phi(t+\delta t)\rangle=\exp \{(i p \dot{q}-i q \dot{p}) \delta t / 2\}, \sim \sim \sim\langle\phi(t)| e^{-i H \delta t}|\phi(t+\delta t)\rangle=\exp \{i L(p, q) \delta t\}$

Problem reduced to high-dimensional integral

$$
Z(\beta)=\prod_{i_{1} i_{2} \cdots i_{N}} \int d p_{1} d q_{1} d p_{2} d q_{2} \cdots d p_{N} d q_{N} \exp \left\{i \int_{0}^{i \beta} d \tau L(p(\tau), q(\tau))\right\}
$$

Three Lattice Results

1. Equation of State

Three Lattice Results

2. Charge
 Fluctuations

Three Lattice Results

3. Melt the q-qbar condensate, aka $\langle\sigma\rangle$ condensate, aka restore chiral symmetry

Condensate couples to quarks and gives them mass

Facilities (RHIC)

$100 \mathrm{GeV} \mathrm{Au}+100 \mathrm{GeV}$, can vary beams and energy

Collaborations: STAR, PHENIX

Facilities (LHC)

6.5A TeV Pb +6.5A TeV Pb

Collaborations: ALICE, ATLAS CMS

Observables

- Spectra
driven by radial flow and final temperature
- Elliptic Flow
$v_{n} \equiv\langle\cos n \phi\rangle$
- Femtoscopic correlations
measure spatial extent of final $f(p, r, t)$
- Jets
strongly damped by QGP
- rare probes
charmonium states should be dissolved
- numerous other correlations
related to chemistry or phase transition
- direct photons and dileptons
known as penetrating probes
- tens of PB of data are stored yearly

Hadronic cascade ($\mathrm{T}<160$) microscopic evolution of $f(p, r, t)$ for each species hydro can't handle 100 species flowing differently

- Jets, rare probes, bulk correlations \& EM probes calculations overlaid on hydro evolution

Femtoscopic correlations
calculated from final $f(p, r, t)$

Comparing to Experiment

- Spectra
sensitive to eq. of state, initial ε
Elliptic flow
strongly affected by viscosity
- Femtoscopy
sensitive to eq. of state
- Jets, rare probes, EM probes
related physics
- Correlations
sensitive to chemistry, phase structure

Spectra

V_{2} (elliptic flow)

Femtoscopic Radii

Constraining Eq. of State with RHIC/LHC Data (MADAI Collab.)

Viscosity from spectra, femtoscopy, elliptic flow at RHIC \& LHC

Likelihood

$$
\begin{aligned}
\eta / s & =(\eta / s)_{0} \\
& +\kappa \ln (T / 165)
\end{aligned}
$$

Charge fluctuations from charge correlation measurements

Likelihood from Data Comparison

Summary

Strong Evidence for:

SE tensor(pressure) near equilibration chemically equilibrated QGP
extremely good liquid with low viscosity strong jet damping \rightarrow strongly interacting liquid

