Shell Model Studies of the Astrophysical Rapid-Proton-Capture Reaction ${}^{30}P(p,\gamma){}^{31}S$

B. Alex Brown, W. A. Richter, and C. Wrede, Phys. Rev. C 89, 062801 June, 2014

How did the elements come into existence?

- Open question in Nuclear Astrophysics, 2013 National Research Council Report

- The ³⁰P(p,γ)³¹S reaction and is a potential bottleneck for nucleosynthesis toward heavier nuclei via rapid proton capture in nova outbursts.
- The reaction rate remains uncertain
- Negative-parity states in ³¹S that have not been treated by past theoretical calculations.

Main Results:

- First time calculations in a full p-f model space for negative-parity states in ³¹S.
- The reaction rate is dominated by these newly calculated negative-parity states (by an order of magnitude)

Shell Model Studies of the Astrophysical Rapid-Proton-Capture Reaction $^{30}P(p,\gamma)^{31}S$

B. Alex Brown, W. A. Richter, and C. Wrede, Phys. Rev. C 89, 062801 June, 2014

Experiment							
Energy _x (KeV)	(2J)π						
	Wrede(2014)	Doherty et al. (2012)	Parikh et al. (2011)				
6160		7+	5				
6327		3[-]	1+				
6377	9	9[-]	9[-]				
6542		3[-]	7,9				
6583	7	3,5,7[-]	7				
6636	9	5,9	9[-]				
6833			11[-]				

- Contradictions between experiments for negative parity spin state assignments (red)
- No previous theory calculations to compare with experiment

- Full calculation of one particle excitation from 1p to 2s/1d or from 2s/1d to 2p/1f shell
- Was not previously calculated because of computational limits

Shell Model Studies of the Astrophysical Rapid-Proton-Capture Reaction $^{30}P(p,\gamma)^{31}S$

B. Alex Brown, W. A. Richter, and C. Wrede, Phys. Rev. C 89, 062801 June, 2014

	Theory				
Energy _x (KeV)		(2J)π	Energy _x (KeV)	(2J)π	
	Wrede(2014)	Doherty et al. (2012)	Shell Model		
6160		7+	5	5825	5-
6327		3[-]	1+	6327	3-
6377	9	9[-]	9[-]	6313	9-
6542		3[-]	7,9	6757	3-
6583	7	3,5,7[-]	7	6792	5-
6636	9	5,9	9[-]	6682	9-
6833			11[-]	6833	11-
				6247	1-
				6602	1-

- Calculated energies normalized to 6833 KeV state (red)
- Reaction rate dominated by 6327 KeV state (blue)
- Reaction rate depends on resonance energy, decay widths, and spin
- Large uncertainties in these results
 - Energy shift of ½⁻ state by 200 keV
- 2013 experiment at MSU with the GRETINA detector will further reduce the uncertainty in this reaction.

Backup

B. Alex Brown, W. A. Richter, and C. Wrede, Phys. Rev. C 89, 062801 June, 2014

Reaction Rate

•
$$N_A \langle \sigma v \rangle \propto (\mu T_9)^{-\frac{3}{2}} \cdot \sum_f \omega \gamma e^{-\frac{E_{\chi-Q}}{(kT)}} cm^3 s^{-1} mole^{-1}$$

Resonance Strength

•
$$\omega \gamma_{30_{P},31_{S}} = \frac{\left(2J_{31_{S}}+1\right)}{\left(2J_{p}+1\right)\left(2J_{30_{P}}+1\right)} \frac{\Gamma_{p}\Gamma_{\gamma}}{\Gamma_{p}+\Gamma_{\gamma}}$$

•
$$T_{\frac{1}{2}} = Ln\left(2\frac{\hbar}{\Gamma}\right)$$

• Reaction rate depends on resonance energy, decay widths, and spin

