Why are Pear Shaped Nuclei Significant?

Devin Lake 5/01/18

Causes of Deformation

- Strong Force > Coulomb Force
 - Nucleons in the atom will fill quantum states
 - Jahn-Teller Effect
- Octupole-Octupole Interaction leads to Pear Shape
- ²²⁰Rd and ²²⁴Rd believed to be asymmetric
 - ²²⁴Rd associated with octupole

Spatial Asymmetric Nuclei

- ²²⁴Ra and ²²⁰Ra are spatial asymmetric
 - Measured using rotational spectrum
 - ²²⁴Ra associated with octupole interaction
- In 2016 ¹⁴⁴Ba had its nucleus directly measured to be pear shaped
 - In 2017 ¹⁴⁶Ba was also added to this list

Measurement of Barium

- Conducted at ATLAS
 - Californium Ion source created Ba Beam
- Used Pb target to measure scattering
 angle
- Used improved charged particle detectors to sort Ba nuclei
 - · CHICO2

Lawrence Livermore National Laboratory

Measurement of Barium Cont.

- Beam contained a large number of contaminants
 - Extra detectors were required to filter out the results

10.1103/PhysRevLett.116.112503

10.1103/PhysRevLett.118.152504

Significance

- May explain lack of antimatter
- CP-symmetry breaking
 - Implies there is CPT-symmetry breaking

References

- Butcher *et al.* (2016). Direct Evidence of Octupole Deformation in Neutron-Rich ¹⁴⁴Ba. doi: 10.1103/PhysRevLett.116.112503
- 2. Butler, P.A., Nazarewicz, W. (1996). Intrinsic Reflection Asymmetry in Atomic Nuclei. doi: 10.1103/RevModPhys.68.349