Antineutrino Anomaly at Daya Bay and Sterile Neutrino

- Final Presentation: PHY802 Survey of Nuclear Physics by Prof. Witek Nazarewicz

Chi-En Teh (Fanurs) teh@nscl.msu.edu May 1, 2018 (Tue)

Abstract

Proposed in 2011, the reactor antineutrino anomaly was thought to be a potential hint for the search of sterile neutrino ν_s , a hypothetical fourth flavor of neutrinos. In 2017, the Daya Bay Collaboration reported a correlation between reactor core fuel evolution and changes in the reactor antineutrino flux. A 7.8% discrepancy between the observed and predicted ²³⁵U yields suggests that this isotope may be the primary contributor to the anomaly, disfavoring the potential existence of sterile neutrino.

MICHIGAN STATE

Outline

Background of Reactor Antineutrino Anomaly

2 A closer look into the $\bar{\nu}_e$ deficit by Daya Bay Collaboration

Conslusion and Prospect

Antineutrino Anomaly of Nuclear Reactors

In 2011, calculations[®] showed that $\bar{\nu}_e$ flux from reactors suffer from deficit:

Reactor Antineutrino Anomaly

P. Huber, Phys. Rev. C 84, 024617 (2011).

- T. A. Mueller et al., Phys. Rev. C 83, 054615 (2011).
- G. Mention et al., Phys. Rev. D 83, 073006 (2011).

Antineutrino Anomaly of Nuclear Reactors

In 2011, calculations[®] showed that $\bar{\nu}_e$ flux from reactors suffer from deficit:

Reactor Antineutrino Anomaly

Recent research by Daya Bay Collaboration*

Solution 2.2 million inverse β decays (IBDs; $\bar{\nu}_e$ capture) observed from 2011-2015. Four primary fission isotopes: ^{235,238}U, ^{239,241}Pu (the rest < 0.3%).

F. P. An *et al.*, Phys. Rev. Lett. **118**, 251801 (2017).

Recent research by Daya Bay Collaboration*

2.2 million inverse \$\beta\$ decays (IBDs; \$\bar{\nu}_e\$ capture) observed from 2011-2015.
Four primary fission isotopes: \$^{235,238}U\$, \$^{239,241}Pu\$ (the rest < 0.3%).

Successfully reproduce the antineutrino anomaly.

The total IBD yield, $\bar{\sigma}_f$ is given by

	$\bar{\sigma}_f(\times 10^{-43} \text{ cm}^2/\text{fission})$
Daya Bay	5.90(13)
Huber-Mueller (2011)	6.22(14)

 $\approx 5.1\%$ deficit was observed

^{**}F. P. An *et al.*, Phys. Rev. Lett. **118**, 251801 (2017).

Effective fission fraction - a previously overlooked variable

Solution Take account of the *effective fission fraction* $F_i(t)$, where the subscript i uniquely identifies the four fission isotopes by their mass numbers.

Plutonium fast breeder reactors

Sorensen, K. (2016, Sep 28). What's the Difference Between Thorium and Uranium Nuclear Reactors? Retrieved from http://www.machinedesign.com/

The Huber-Mueller Model (H-M)

*All cross sections are in the unit of $\times 10^{-43}$ cm²/fission.

	$\bar{\sigma}_f = \sum_i \bar{F}_i \sigma_i$
Daya Bay	5.90(13)
Huber-Mueller	6.22(14)
*	decompose by i

i	235	238	239	241
\bar{F}_i	57.1%	7.6%	29.9%	5.4%
σ_i^{Daya}	6.17(17)	10.1(10)	4.27(26)	6.04(60)

The Huber-Mueller Model (H-M)

i	235	238	239	241	
\bar{F}_i	57.1%	7.6%	29.9%	5.4%	
σ_i^{Daya}	6.17(17)	10.1(10)	4.27(26)	6.04(60)	
$\sigma_i^{\text{H-M}}$	Expect $\approx 5.1\%~extra~ar{ u}_e$ for all i if $ u_s$ exists				

A closer look into the $\bar{\nu}_e$ deficit by Daya Bay Collaboration

IBD yields of ^{235}U and ^{239}Pu

IBD yields of ²³⁵U and ²³⁹Pu

Introduce deficit: $\Delta \sigma_i := \frac{\sigma_i^{\mathsf{Daya}} - \sigma_i^{\mathsf{H-M}}}{\sigma_i^{\mathsf{H-M}}}$ $\implies \Delta \sigma_{235} \approx -7.8\%$ Hypothesis: $\Delta \sigma_{235} = \Delta \sigma_{239}$ • p-value = 0.0049 \bullet reject with 2.8 σ_{std} C.L.

Conslusion and Prospect

- A model that invokes sterile neutrino requires an equal fractional flux deficit.
- $\ensuremath{\mathfrak{S}}$ Daya Bay Collaboration rejects this at $2.8\sigma_{\rm std}.$
- Instead, the research favors for an incorrect prediction of the ²³⁵U flux as the primary cause to the anomaly.

Conslusion and Prospect

- A model that invokes sterile neutrino requires an equal fractional flux deficit.
- Solution Daya Bay Collaboration rejects this at $2.8\sigma_{std}$.
- Instead, the research favors for an incorrect prediction of the ²³⁵U flux as the primary cause to the anomaly.
- Solution by But to fully resolve the anomaly, the precise contribution of β decay in each fission isotope to the antineutrino spectrum has to be identified.

Antineutrino Anomaly at Daya Bay and Sterile Neutrino

Q&A

Chi-En Teh (Fanurs) teh@nscl.msu.edu

Proposed in 2011, the reactor antineutrino anomaly was thought to be a potential hint for the search of sterile neutrino ν_s , a hypothetical fourth flavor of neutrinos. In 2017, the Daya Bay Collaboration reported a correlation between reactor core fuel evolution and changes in the reactor antineutrino flux. A 7.8% discrepancy between the observed and predicted ^{235}U yields suggests that this isotope may be the primary contributor to the anomaly, disfavoring the potential existence of sterile neutrino.

