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Abstract. We show that due to the energy cutoff in the Hartree-Fock-Bogoliubov quasiparticle space,
the Bogoliubov transformation becomes non-unitary. We propose a method of restoring the unitarity by
introducing a truncated single-particle Hilbert space, in which the HFB equations are to be solved.

PACS. 21.30.Fe – 21.60.Jz – 24.30.Cz

1 Introduction

Skyrme energy density functionals are among the most
commonly used in the self-consistent mean-field nuclear
structure calculations. The pairing component of the func-
tional usually corresponds to a zero-range interaction in
the coordinate space [1], which is equivalent to a con-
stant (infinite range) interaction in the momentum space.
Therefore, an energy cutoff followed by a pairing strength
refit is necessary to regularize the results, and the num-
ber of active quasiparticle states becomes finite. On the
other hand, the dimension of the particle space is either
infinite (coordinate representation) or truncated for rea-
sons that are not related to the pairing regularization.
This implies different dimensions of particle and quasipar-
ticle spaces and, therefore, renders the Bogoliubov trans-
formation non-unitary. As a result, the pairing tensor is no
longer antisymmetric, but it acquires a finite symmetric
component.

In this work, we propose a method of restoring the
unitarity of the Bogoliubov transformation, while keeping
the number of quasiparticle states limited. The method is
based on a truncation of the particle space and solving the
Hartree-Fock-Bogoliubov [2] (HFB) equations in this trun-
cated Hilbert space. The proposed truncation scheme ac-
commodates all the particle states that are needed within
a given truncation of the quasiparticle space.

2 Method

By using the code HFBTHO [3], we perform the HFB
calculations within the particle space of 20 harmonic os-

cillator shells, which leads to the single-particle energies
of 200 MeV and above. When no truncation is performed
in the quasiparticle space, the Bogoliubov transformation
is unitary, and this guarantees that the pairing tensor κ

is antisymmetric. This is no longer true for the finite en-
ergy cutoff. The inset in Fig. 1 shows the maximum ma-
trix element of the symmetric and antisymmetric parts of
the pairing tensor as functions of the cutoff energy Ec in
the quasiparticle space. Typically, the former does not ex-
ceed 1% of the latter; however, a non-zero symmetric com-
ponent means that the fermion quasiparticle state repre-
senting the HFB ground state does not exist. Usually one
simply disregards this symmetric part in the Skyrme-HFB
calculations. Our method ensures the antisymmetricity of
the pairing tensor and, at the same time, keeps the number
of quasiparticle states limited. The approach is based on
finding an optimal truncated particle space, dictated by
a given quasiparticle truncation, in which the HFB equa-
tions are solved without any further cutoff. Full-space di-
agonalization of the HFB equations is necessary only to
provide the aforementioned optimal basis.

The Singular Value Decomposition (SVD) [4] is an al-
gebraic method, which, by means of finding the so-called
singular values, orders orthonormal basis states according
to their importance for decomposition of a rectangular
matrix into a sum of components. We use it to decom-
pose the combined matrix [B∗A∗], where B and A are
the Bogoliubov matrices corresponding to a non-unitary
transformation, and assemble the optimal basis by taking
only those particle states which have the corresponding
singular values above a certain SVD cutoff, vc. Since for
each value of the SVD cutoff the dimension of the result-
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Fig. 1. Total energies of 120Sn obtained for the Sly4 Skyrme
functional and different values of the energy and SVD cutoffs.
Stars correspond to the standard HFB solutions and diamonds
to two values of the SVD cutoff: vc = 10−3 and 10−2. The max-
imum matrix element of the symmetric (left scale) and anti-
symmetric (right scale) parts of the pairing tensor are shown
in the inset.

ing particle space is different, one has to refit the pairing
strength as function of vc. We do it so that the pairing
gap is the same in both steps: in the full-space solution
obtained for a given energy cutoff and in the truncated-
space solution. Our calculations are carried out according
to the following scheme:

a Self-consistent solution of the HFB equations in the
full space.

b Singular Value Decomposition of the combined matrix
[B∗A∗] corresponding to the full-space solution.

c Defining the truncated particle space by keeping the
SVD states that correspond to singular values above
the SVD cutoff vc.

d Self-consistent solution of the HFB equations in the
truncated particle space.

e Fitting the pairing strength by repeating step (d) with
different pairing strengths until the pairing gaps in the
full and truncated spaces are equal.

3 Results

Figure 2 shows the number of states in the truncated par-
ticle spaces as functions of the SVD cutoff vc for various
cutoff energies Ec. For large vc or Ec, these numbers are
close to the numbers of quasiparticle states (shown by dot-
ted lines); however, for small vc, additional particle states
are necessary to properly represent the kept quasiparti-
cle states. Total energies obtained by solving the HFB
equations in the truncated particle spaces are shown in
Fig. 1. For cutoff energies above 30 MeV, the total en-
ergy is stable up to about 200 keV. For any fixed cutoff
energy, the method is also very stable (<100 keV) with
respect to the SVD cutoff. Therefore, our method allows
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Fig. 2. Number of neutron particle states in 120Sn in the trun-
cated spaces (solid lines) and numbers of quasiparticle states
below the cutoff energies (dotted lines) as functions of the SVD
cutoff, for different values of the energy cutoff.

us to perform the HFB calculations with satisfying pre-
cision for relatively small cutoff energies and dimensions
of the particle space. While the two-step character of the
method, and necessity to refit the pairing strength, makes
the method significantly more computationally extensive
than the standard HFB approach, the procedure allows
for usual interpretation in terms of Bogoliubov product
states. In order to implement the pairing readjustments,
one could use the Green-function regularization methods
[5], which will be considered in future work.
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