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Abstract

We describe the program HFBTHO for axially deformed configurational Hartree—Fock—Bogolyubov calculations with
Skyrme-forces and zero-range pairing interaction using Harmonic-Oscillator and/or Transformed Harmonic-Oscillator states.
The particle-number symmetry is approximately restored using the Lipkin—Nogami prescription, followed by an exact particle
number projection after the variation. The program can be used in a variety of applications, including systematic studies of wide
ranges of nuclei, both spherical and axially deformed, extending all the way out to nucleon drip lines.
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Operating systems: LINUX, Windows

Programming language used: FORTRAN-95

Memory required to execute with typical data: 59 MB when usingVgp = 20

No. of bitsin aword: 64

No. of processors used: 1

Has the code been vectorized?: No

No. of bytes in distributed program, including test data, etc.: 195285
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Distribution format: tar.gz

Nature of physical problem: The solution of self-consistent mean-field equations for weakly bound paired nuclei requires a
correct description of the asymptotic properties of nuclear quasiparticle wave functions. In the present implementation, this is
achieved by using the single-particle wave functions of the Transformed Harmonic Oscillator, which allows for an accurate
description of deformation effects and pairing correlations in nuclei arbitrarily close to the particle drip lines.

Method of solution: The program uses the axially Transformed Harmonic Oscillator (THO) single-particle basis to expand
guasiparticle wave functions. It iteratively diagonalizes the Hartree—Fock—Bogolyubov Hamiltonian based on the Skyrme-forces
and zero-range pairing interaction until a self-consistent solution is found.

Restrictions on the complexity of the problem: Axial-, time-reversal-, and space-inversion symmetries are assumed. Only
guasiparticle vacua of even—even nuclei can be calculated.

Typical running time: 4 s per iteration on an Intel Xeon 2.8 GHz processor when usSipg= 20

Unusual features of the program: none
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1. Introduction

Nuclear structure theory strives to build a comprehensive microscopic framework in which bulk nuclear prop-
erties, nuclear excitations, and nuclear reactions can all be described. Exotic radioactive nuclei are the critical new
focus in this quest. The extreme isospin of these nuclei and their weak binding bring new phenomena that amplify
important features of the nuclear many-body problem.

A proper theoretical description of such weakly bound systems requires a careful treatment of the asymptotic
part of the nucleonic density. An appropriate framework for these calculations is Hartree—Fock—Bogolyubov (HFB)
theory, solved in the coordinate representafib2]. This method has been used extensively in the treatment of
spherical nuclej3], but is much more difficult to implement for systems with deformed equilibrium shapes. There
have been three ways of implementing deformation effects into the coordinate-space HFB. The oldest method,
the so-called two-basis methdd—6], is based on the diagonalization of the particle—particle part of the HFB
Hamiltonian in the self-consistent basis, obtained by solving the HF problem with box boundary conditions. The
disadvantage of this method is the appearance of a large number of positive-energy free-particle (box) states,
which limits the number of discretized continuum states (the maximum single-particle energy taken in this method
is usually less than 10 MeV).

The second, very promising strategy, the so-called canonical-basis HFB method, utilizes the spatially local-
ized eigenstates of the one-body density matrix without explicitly going to the quasiparticle represdnitaijon
Finally, an approach to axial coordinate-space HFB has recently been developed that uses a basis-spline metho
[10,11] While precise, these two latter methods are not easy to implement and, because they are time-consuming,
cannot be used in large-scale calculations in which a crucial factor is the ability to perform quick calculations for
many nuclei.



M.V. Stoitsov et al. / Computer Physics Communications 167 (2005) 43-63 45

In the absence of fast coordinate-space solutions to the deformed HFB equations, it is useful to consider in-
stead the configuration-space approach, whereby the HFB solution is expanded in some single-particle basis. In
this context, the basis of a harmonic oscillator (HO) turned out to be particularly useful. Over the years, many
configuration-space HFBHO codes have been developed, either employing Skyrme forces or the Gogny effective
interaction[12—16] or using a relativistic Lagrangigd 7] in the context of the relativistic Hartree—Bogolyubov
theory. For nuclei at the drip lines, however, the HABO expansion converges slowly as a function of the number
of oscillator shell§3], producing wave functions that decay too rapidly at large distances.

Arelated alternative approach that has recently been proposed is to expand the quasiparticle HFB wave functions
in a complete set of transformed harmonic oscillator (THO) basis Jte8gsobtained by applying a local-scaling
coordinate transformation (LST)9,20]to the standard HO basis. Applications of this HFBHO methodology
have been reported both in the nonrelativifit] and relativistic domaing22]. In all of these calculations, specific
global parameterizations were employed for the scalar LST function that defines the THO basis. There are several
limitations in such an approach, however. For example, the minimization procedure that is needed in such an
approach to optimally define the basis parameters is computationally very time-consuming, making it very difficult
to apply the method systematically to nuclei across the periodic table.

Recently, a new prescription for choosing the THO basis has been proposed and employed in self-consistent
large-scale calculatiorj@3]. For a given nucleus, the new prescription requires as input the results from a relatively
simple HFB+HO calculation, with no variational optimization. The resulting THO basis leads to{HHBO
results that almost exactly reproduce the coordinate-space HFB results for spherical2djcBecause the new
prescription requires no variational optimization of the LST function, it can be applied in systematic studies of
nuclear properties. In order to correct for the particle number nonconservation inherent to the HFB approach, the
Lipkin—Nogami prescription for an approximate particle number projection, followed by an exact particle number
projection after the variation has been implemented in the code HFBTHO (viZB&gH]

The paper is organized as follows. Sectibgives a brief summary of the HFB formalism. The implementation
of the method to the case of the Skyrme energy density functional is discussed in Sedtigather with the
overview of the THO method and the treatment of pairing. Seaidescribes the code HFBTHO (v1.66p). Finally,
conclusions are given in Sectién

2. Hartree—Fock—Bogolyubov method

A two-body Hamiltonian of a system of fermions can be expressed in terms of a set of annihilation and creation
operatorgc, ¢'):

1 _
H= Z enlnzc:[lcnz + 2 Z vnlnzng,ucllclzcwcn?’, Q)
niny ninanang
Wherev,, nonan, = (n1n2|V|nana — nan3) are anti-symmetrized two-body interaction matrix-elements. In the HFB
method, the ground-state wave functi@n) is defined as the quasiparticle vacuapi®) = 0, where the quasipar-
ticle operatorge, 1) are connected to the original particle operators via a linear Bogolyubov transformation

O = Z(U:kc" + Vn*kclz)’ ‘X]I = Z(Vnkcn + Unkc,l—)v (2)

n n

which can be rewritten in the matrix form as

o ut vt c
()= (o 7)(5) @
The matriced/ andV satisfy the relations:

vtu+vlv=r1, uvu'+vvT=1, Uv'v+viu=0, vV'+vUT =0 (4)
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In terms of the normab and pairingc one-body density matrices, defined as

puw = (@ el @)= VIV ki = (@lewenl®) = (VU Dy, ()
the expectation value of the Hamiltoniét) is expressed as an energy functional
(@|H|P) 1 1
Elp,k]=———F—=Tr =TI — = Tr[Ax™], 6
[p, «] @1P) et )p | =5 TlAK] (6)
where
Fnlng = Z vn1n2n3n4pn4n2» nlng Z UninonangKnzng- (7)
nana n3n4
The variation of the energ{f) with respect tqo andk results in the HFB equations:
e+ I —A A U U
(07 ) (9)=2(8),

where the Lagrange multiplier has been introduced to fix the correct average particle number.

It should be stressed that the modern energy functiof@lsontain terms that cannot be simply related to
some prescribed effective interaction, see, e.g., R&fs28]for details. In this respect the functior(@)) should be
considered in the broader context of the energy density functional theory.

3. Skyrme Hartree—Fock—Bogolyubov method
3.1. Skyrme energy density functional

For Skyrme forces, the HFB ener¢g) has the form of a local energy density functional,

E[p,ﬁ]:/d3rH(r), 9)
where
Hr)=H()+ H(r) (10)

is the sum of the mean-field and pairing energy densities. In the present implementation, we use the following
explicit forms:

n? 1 1 1
H() =7+ §t0[<1+ §x0>,02 - (5 +xo) quz]

1 1 3

+§t1|:<1+§x1>p<r—ZAp> < +x1>2pq<rq qu>]
1T, 1 1 1 1

e (1 a0e) - (Ge) Zoo(rs o)
1 1

1—2t3/0 [<l+ §x3>p2—<x3+ )qu}

- —(t1X1 + 12x2) ZJU +3 (t1 —1)Y 35— Wo > i [kaJij +y pqkaq,ijj| (11)

q.ij ijk q
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and

- 1 v
H(r) = EVo[l— Vl(%) ] p2. (12)
q

The indexg labels the neutrorng(= n) or proton ¢ = p) densities, while densities without index denote the sums
of proton and neutron densitie&.(r) and A (r) depend on the local particle densjtyr), local pairing density
p(r), kinetic energy density (r), and spin-current density; (r):
p(r)=p(r,r), p(r)=p(r,r),
1 (13)
() = Vi Vo, r)|p=r, Jij(n) = Z(Vz’ = V)i, )=,

where p(r,r’), p;(r,r"), p(r,r’), pi(r,r") are defined by the spin-dependent one-body density matrices in the
standard way:

(ro,r'o") = 2p(r, )3 +1Z(|-| Npi(r,t)
,00,0——2[)7 oo’ inUzU,OL ),

1 1 (14)
pro.1'0") = 5501850 + 53 (oloilo)pi(r. 1),
i
We use the pairing density matrix
pro,r'c’y=—-20"k(r,o,1r', —0"), (15)

instead of the pairing tenser. This is convenient for describing time-even quasiparticle states wherplaoit
are hermitian and time-evgf]. In the pairing energy densif{L2), we have restricted our consideration to contact
(delta) pairing forces in order to reduce the complexity of the general expre$2jdf

3.2. Skyrme Hartree—Fock—Bogolyubov equations
The variation of the energ{®) with respect tqo andp results in the Skyrme HFB equations:

Z h(r,o,0’)  h(r,o,0) UE,t6)\ _(E+r 0 U(E,ro) (16)
<\ h(r,0,0") —h(r,0,0") J\V(E,;tc) )\ 0 E—-1)J\V(E.r0))"

where local fields:(r, o, ') andi(r, o, ¢’) can be easily calculated in the coordinate space by using the following
explicit expressions:

1
hq(r,O',U/) = —VMqV + Uq + Z Z(VinBq,ij + Bq,ijViO'jl),
ij
~ o Y
hq(r,o,0") = Vo(l— V1<—) )ﬁq,
L0
where

YR TC S0Vl (14 LYok (ke 2) 02
¢= 5o Tl S )P —(x1+ 3 o |+ 52 Sz )p+ %2+ 3 )eg s

1 1 1
By.ij = —Z(tlm + t2x2)dij + Z(tl —12)dq.ij + EWOUZkgijka(p + 0q),

(17)
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ty =1 (1+50)0 = (x0+ 3 )]
(o 30)( ) (o 2) (200
S R Y A R
gy (4 )= (o 3) (m -5 12

Vo V- 1
V 0 1( ) Z EWOZSijka[JU +‘]q,ij]~ (18)

ijk

NI =
NI NI W

The properties of the HFB equation in spatial coordinates(Hg), have been discussed in REA]. In particular,
it has been shown that the spectrum of eigenenemgiisscontinuous fotE| > —A and discrete fotE| < —A. In
the present implementation, we solve the HFB equations by expanding quasiparticle wave functions in a finite
basis; therefore, the quasiparticle spectriimbecomes discretized. Hence in the following we use the notation
Vi(ro) = V(E,ro) andUi(ro) = U(Eg,ro). Since forE; > 0 andi < 0 the lower component®(ro) are
localized functions of , the density matrices,

p(ro,r'e’) = Z Vi(ro)VE(r'e'), (19)
k
oo, r'e’) = —ka(ra)u,j(r/a’), (20)
are always localized. The orthogonality relation for the single-quasiparticle HFB wave functions reads
/d3r S Ut Up (o) + Vo) Vi (to)] = S (21)
and the norrr(:s of the lower componenis,

Nkad3

define the total number of particles

N:/d3rp(r):ZNk. (23)

(22)

3.3. Axially deformed nuclei

For spherical nuclei, the Skyrme HFB equations are best solved in the coordinate space, beda63ecHgces
in this case to a set of radial differential equati¢28]. In the case of deformed nuclei, however, the solution of a
deformed HFB equation in coordinate space is a difficult and time-consuming task. For this reason, here we use the
method proposed by Vautherfi@0], which combines two different representations. The solution of the deformed
HFB equation is carried out by diagonalizing the HFB Hamiltonian in the configurational space of wave-functions
with appropriate symmetry, while evaluation of the potentials and densities is performed in coordinate space. Such
a method is applicable to nonaxial deformati¢ghé], but typical computation times for large-scale mass-table
calculations are prohibitively large. In the present implementation, we make the restriction to axially-symmetric
and reflection-symmetric shapes in order to obtain HFB solutions within a much shorter CPU time.
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In the case of axial symmetry, the third componénof the total angular momentum is conserved and provides
a good quantum numbe?;. Therefore, quasiparticle HFB states can be written in the following form:

U(r,o, 1) U2\ 4 U (r2) \ ja+
= T gt e + @Ay , 24
( Vit 0. 7) ) Xai (D) [( VG 2) X+1/2(0) Vo) x-1/2(0) (24)
where AT = 2, +1/2 andr, z, andg are the standard cylindrical coordinates defining the three-dimensional
position vector as = (r coSyp, r Sing, z), while z is the chosen symmetry axis. The quasiparticle stéysare

also assumed to be eigenstates of the third component of the isospin operator with eigepvalue$/2 for
protons andy, = —1/2 for neutrons.

By substituting ansat24) into Eqg. (16), the HFB equation reduces to a system of equations involving the
cylindrical variables- andz only. The same is also true for the local densities, i.e.

p(r,z)= Z(|Vk+(r, z)|2 + |Vk_(r, z)\z),

k

2 _ 2 1 _ 2
T(r,z) = Xk:<|v,vk+(r,z)| + |V, V(2] +r—2|A+Vk (r,2)]

VLV O+ [V 0 P+ AV z)|2>,

" (25)

(V-I(r,z2)= Z(VV Vk+(r, V.V (r2) + AT Vk+(r, D[V, Vk+(r, 2) = V.V (r,2)]
k

- + AT - +
= ViV, (V. V, (r’Z)_TVk (rsZ)[VrVk (r,Z)‘i‘szk (r’Z)])y

p(r,z) =— Z(Vk+(r, DU (r2) + Vi (n U (r,2)),
k

whereV, = 9/dr andV, = 3/3z. When tensor forces are considered, the following additional densities have to be
calculated:

T, 2) =Y (Ve Vi r V (2 = VeV (n )V (r2),
k

T =S (Ao Ve 02 + AV oV 0 2)
Qr raZ _; T k raZ k rvz +7 k raz k r7Z 3
(26)
To(r. ) =Y (VVH 0V (n2) = VoV (R )V 2).
k

- +
Jor(r,2) = Z(A— Vk+ (r,2) Vk+ (r,2) — A— Vi )V, (@, Z)),
P r r
where indices denote the cylindrical components of the tefgpwhile all remaining components vanish due to
the cylindrical symmetry, i.el,,(r, 2) = J;; (1, 2) = Jpu (1, 2) = Jr;(r, 2) = Jor (r,2) = 0.

Due to the time-reversal symmetry, if thth state, defined by the s(qy,j UG, V,f, Vi, $2;}, satisfies the HFB
equation(16), then thekth state, corresponding to the set defined by, —U,", V', —V,", —$2}, also satisfies
the HFB equation for the same quasiparticle endigy Moreover, all wave functions in cylindrical coordinates
are real. The contributions from the time-reversed stat@sdk are identical (we assume that the set of occupied
states is invariant with respect to the time-reversal), and we can restrict all summations to positive v&dyes of
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while multiplying total results by a factor two. In a similar way, one can see that due to the assumed reflection
symmetry, only positive values afneed to be considered.

3.4. HO and THO wave functions

The solution of the HFB equatiofl6) is obtained by expanding the quasiparticle funct{@d) in a given
complete set of basis wave functions that conserve axial symmetry and parity. The program HFBTHO (v1.66p) is
able to do so for the two basis sets of wave functions: HO and THO.

The HO set consists of eigenfunctions of a single-particle Hamiltonian for an axially deformed harmonic oscil-
lator potential. By using the standard oscillator constants:

1 maw; 12 1 mw, \Y?
ﬂZ bz < h > ’ IBL bJ_ ( h ) ’ ( )
and auxiliary variables

E=zB.. n=r?ps, (28)

the HO eigenfunctions are written explicitly as

A g4
Pulr. @) = Yy} (V. () =z (0), (29)
where
YA = BLYA () = NA B2yl A12e 1210 ), 0)

Y, (2) = B2, (§) = Nu, p2 € 5121, (&),
H, (&) andL,‘,‘r (n) denote the Hermite and associated Laguerre polynofid]srespectively, and the normaliza-
tion factors read

1 1/2 ) - 1/2
N, = —— d N = ——— . 31
<ﬁ2ﬂznzl> and N, ((nr+|A|>!> e

The set of quantum numbets= {n,,n,, A, ¥'} includes the numbers of nodes, andn,, in the r- and z-
directions, respectively, and the projections on gkexis, A and X, of the angular momentum operator and the
spin.

The HO energy associated with the HO st@®) reads

1
ea:(Zn,+|A|+1)ha)L+(nz+§)ha)z, (32)

and the basis used by the code consist®#gt= (Nsh+ 1) (Nsh+ 2) (Nsh+ 3) /6 states having the lowest energigs
for the given frequenciekw; andfiw,. In this way, for the spherical basis, i.e. fob | = hiw,, all HO shells with
the numbers of quantd =0, ..., Ng, are included in the basis. When the basis becomes deformaad# fw,,
the code selects the lowest-HO-energy basis states by checking the HO energies of all states up to 50 HO quanta
Note that in this case the maximum value of the quantum nupeand the number of blocks in which the HFB
equation is diagonalized, see Sect®B depend on the deformation of the basis.

The THO set of basis wave functions consists of transformed harmonic oscillator functions, which are generated
by applying the local scale transformation (LYT9,20,32]to the HO single-particle wave functioi®9). In the
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axially deformed case, the LST acts only on the cylindrical coordinateslz, i.e.

f A

r—or=rz)=r ,
R (33)

Z—>Z/EZ/(F Z)ZZf(R)

9 R 9

and the resulting THO wave functions read

2(R) af (R gae
@utt.0)= | T Ly (%f(R)) Yo, (%f(R))EXE(U), (34)

where

2 2

Z r

R= |5+, 35
2t (35)

and f(R) is a scalar LST function. In the code HFBTHO (v1.66p), the func{fg®) is chosen as in Ref23]. It
transforms the incorrect Gaussian asymptotic behavior of deformed HO wave functions into the correct exponential
form. Below, we keep the same notatidy (r, o) for both HO and THO wave functions, because expressions in
which they enter are almost identical in both cases and are valid for both HO and THO variants.

3.5. HFB diagonalization in configurational space

We use the same basis wave functions to expand upper and lower components of the quasiparticle states, i.e.

Ur(r,0,7) = % (1) ) Ura®a (1, 0),
) (36)
Vi(r,0,7) = 2 (1) ) ViaPalr, 0),

whered, (r, o) are the HO or THO basis states. Note that the same Bgsis o) is used for protons and neutrons.
Inserting expressio(86) into the HFB equatiofl6) and using the orthogonality of the basis states, we find that
the expansion coefficients have to be eigenvectors of the HFB Hamiltonian matrix

hlar) — (a0 JACD) Uy Uy
. = Ey : (37)
B —h@o (a0 Vi Vi

where the quasiparticle energigs, the chemical potential'@) | and the matrices
h) = (@alhy|Pp) and hLY = (Pulhg|Dp) (38)
are defined for a given protogy = +1/2) or neutron §; = —1/2) block.
Proton and neutron blocks are decoupled and can be diagonalized separately. Furthermore, in the case of axially
deformed nuclei considered hetg; = Ay + X} is a good quantum number and, therefore, the math'g%sand

fzgj; are block diagonal, each block being characterized by a given val2e Bforeover, for the case of conserved

parity considered here; = (—1)":*4 is also a good quantum number, and each ofstheblocks falls into two
sub-blocks characterized by the valuestof +1. Finally, due to the time-reversal symmetry, the Hamiltonian
matrices need to be constructed for positive valueRobnly.
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3.6. Calculations of matrix elements

As discussed in Sectiad® 2, local densitieg25) and average field§17) and (18) are calculated in coordinate
space. Therefore, the calculation of matrix elemgB8 amounts to calculating appropriate spatial integrals in
the cylindrical coordinates andz. In practice, the integration is carried out by using Gaussian quadrd8ires
for 22 Gauss—Hermite points in the> 0 direction and 22 Gauss—Laguerre points inkdirection. This gives a
sufficient accuracy for calculations up A, = 40.

In the case of the HO basis functions, the integration is performed by using the Gauss integratioy,pairds,
nm, for which the local densities and fields have to be calculated at the mesh paipts- 6 &, andr,, = bﬂ;l/z.

As an example, consider the following diagonal matrix element of the poténtial z) (18),

oo oo

Udo = / dz f rdr Uq<z,r>1/f,i(z>w,?,.2(r). (39)

—00 0

Inserting here the HO functior’gs,fz (2) andw,{)z(r) (29), and changing the integration variables to dimensionless
variablest andn, the above matrix element reads

Udo = f dé f dn Uy (&, M7, (E) P2 (), (40)
—00 O
where
Ug6.m) = U (b, /b1, (41)

Here, Gaussian quadrature can be applied directly, because the HO wave functions contain appropriate exponentia
profile functions.

The situation is a little bit more complicated in the case of the THO basis states where, before calculating, one
has to change variables with respect to the LST functif(®). For example, let us consider the same matrix
elementg39) but in THO representation:

FAR)df(R) f(R) 2f2(R)
ud, —/dzfrdqu(z, [ = ]wi<2 = >I/fr£2(r7) (42)

Introducing new d|menS|onIess variables
z [(R) 2 2R

= — [ —— 4
for which we have
2 [fAR)df(R)
dé dn = drdz, 44
Snbzbi[Rz R | E (44)

the matrix elements have the form of integrals, which are exactly identical to those in the HQ4@sefter
changing the functiow, (¢, n) to

- 1 R
Uq@,n):EU( e T ) (45)

f(R)
The calculation of matrix elements corresponding to derivative terms in the Hamiltdiaoan be performed in
o :2 .
an analogous way, after the derivatives of the Jaco ) %, are taken into account.
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3.7. Calculation of local densities

After diagonalizing the HFB equatidi37), local densities are calculated as

pro o) =) pup®yro)Pp(t'a’),  5(ro.r'o) =) fup®i(ro)Pp(r's"), (46)
off of
where®, (ro) denotes the HO or THO basis wave functions, and the matrix elements of mean-field and pairing
density matrices read

pap =D VarVek:  Bap=—)_ VaiUpk. (47)
k k

The HFB calculations for a zero-range pairing interaction give divergent energies when increasing the number
of quasiparticle states in the sums of E4j7) (see the discussion in Rd8]). Therefore, they invariably require
a truncation of the quasiparticle basis by introducing a cut-off for the quasiparticle energy and including only all
quasiparticle states up to this value.

The choice of an appropriate cut-off procedure has been discusgdAdter each iteration, performed with a
given Fermi energy., one calculates an equivalent spectrignand pairing gapg\x:

ér = (1 — 2Ny Ex, Ax =2Ex/ Ne(L— Np), (48)

whereN;, denotes the norrg23) of the lower HFB wave function. Using this spectrum and pairing gaps, the Fermi
energy is readjusted to obtain the correct value of particle number, and this new value is used in the next HFB
iteration.

Due to the similarity between the equivalent spectand the single-particle energies, one can take into
account only those quasipatrticle states for which

ék g émax, (49)

whereemax > 0 is a parameter defining the amount of the positive-energy phase space taken into account. Since
all hole-like quasiparticle stated); < 1/2, have negative values éf, condition(49) guarantees that they are all

taken into account. In this way, a global cut-off prescription is defined which fulfills the requirement of taking into
account the positive-energy phase space as well as all quasiparticle states up to the highest hole-like quasiparticle
energy. In the code, a default valueagfax = 60 MeV is used.

3.8. Coulomb interaction

In the case of proton states, one has to add to the central potential the direct Coulomb field

vEr) = eZ/d3r/ %m, (50)

as well as the exchange Coulomb field, which in the present implementation is treated within the Slater approxi-
mation:

,(3 1/3 s
Vi) =—e (5) oy (r). (51)

The integrand in the direct teri§b0) has a logarithmic singularity at the point=r’. A way to bypass this
difficulty is to use the Vautherin prescripti¢80], i.e. to employ the identity

Aplr =t =2/Ir = 1|, (52)
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and then integrate by parts the integral in Exf)). As a results, one obtains a singularity-free expression

2
e I i /
Ve = Efo@r Ir —r'|App, (). (53)
In cylindrical coordinates, after integrating over the azimuthal apgkmne finds
o0 [e¢)
Ve, ) —Zezfrdr / devaoroE( " N ap, o) (54)
d )= Z , < d(}", Z) IOP y <),
0 —00

whered(r,z) = [(z — 2)%2 + (r + r")?] and E(x) is the complete elliptic integral of the second kind that can be
approximated by a standard polynomial form[8a].

Equivalently, one can use the prescription developed originally for calculations with the finite-range (Gogny)
force[3]. It consists of expressing the Coulomb force as a sum of Gaussians:

o
1 _ 2 /d_/;e—(f—f/)z/uz (55)
r—r’ T ’
| | J_O n
which gives
2 [d
%
VdC(r)zez—/—zlu(r), (56)
T
fo 0

where the integral
IM(I') — /dsr/e—(r—r’)z/MZp(r/) (57)

can be easily calculated in cylindrical coordinates. After integrating over the azimuthakgrayle finds
o0 o 2 ,
/ ’ 2
I/L (r/’ Z/) — 27 / rdr / dz e—(r2+r 2+(Z—Z ) )/;L210<r_£>pp (r,2), (58)
"
0 —00

wherelp(x) is the Bessel function that can also be approximated by a standard polynomial f@8djula
In order to perform the remaining one-dimensional integration in(&8), the variableu is changed to

E=b/\/b%+ u2, (59)

whereb is the largest of the two HO lengtlds andb | . This change of variable is very convenient, since then the
range of integration becomégg, 1]. The integral56)is accurately computed by using a 30-point Gauss—Legendre
gquadrature with respect to

We have tested the precision of both prescriptions, E&®. and (56) and checked that the second one gives
better results within the adopted numbers of Gauss—Hermite and Gauss—Laguerre points that are used for calculat
ing proton densities. Therefore, in the code HFBTHO (v1.66p) this second prescription is used, while the first one
remains in the code, but is inactive.

3.9. Lipkin-Nogami method

The LN method constitutes an efficient method for approximately restoring the particle numbers before the
variation [33]. With only a slight modification of the HFB procedure outlined above, it is possible to obtain a
very good approximation for the optimal HFB state, on which an exact particle number projection then has to be
performed34,35]
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In more detail, the LN method is implemented by performing the HFB calculations with an additional term
included in the HF Hamiltonian,

h =h—2x(1-2p), (60)
and by iteratively calculating the parameter(separately for neutrons and protons) so as to properly describe the
curvature of the total energy as a function of particle number. For an arbitrary two-body interéctigrcan be
calculated from the particle-number dispersion accordiri§3f
L OV 482(0)
(0IN2/4)(4|N2|0)’

where|0) is the quasiparticle vacuuny, is the particle number operator, afi(4] is the projection operator onto
the 4-quasiparticle space. On evaluating all required matrix elements, one ¢B&ins

AT p(L—p)+4TrA(1—p)x

(61)

= , 62
2T 8Trp(l— p)2— 16Trp2(1— p)? (62)
where the potentials
1
Th =D Vaparp (P(L= ) g5 wp =5 O Vaparp (PK)arp (63)

ﬂﬂ/ a/'B/
can be calculated in full analogy 10 and A by replacinge andx by o (1 — p) andpx, respectively. In the case of
the seniority-pairing interaction with strength Eq.(62) simplifies to
G Tr(l— p)k Trpk — 2Tr(1 — p)2p?
2T 4 Trp—p)P—2Trp2A—p)?
An explicit calculation ofr, from Eqg.(62) requires calculating new sets of fiel(&3), which is rather cumber-

some. However, we have foufd5] that Eq.(62) can be well approximated by the seniority-pairing expression
(64) with the effective strength

(64)

AZ
Epair
determined from the pairing energy

G =Geff = — (65)

1

and the average pairing gap

Tr Ap

Trp

Such a procedure is implemented in the code HFBTHO (v1.66p).

A=

(67)

3.10. Particle-number projection after variation

Introducing the particle-number projection operatorfoparticles,

PN _ i/d¢ do-N), (68)
2

whereN is the number operator, the average HFB energy of the particle-number projected state can be expressed a:
an integral over the gauge angleof the Hamiltonian matrix elements between states with different gauge angles
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[37,38] In particular, for the Skyrme-HFB method implemented here, the particle-number projected energy can be
written as[25,26]

N
Copviar = [ @@ [drie.o), (69
where the gauge-angle dependent energy deftsity ¢) is derived from the unprojected energy dengityr)
(10) by simply substituting the particle and pairing local densiti@s, 46(r), T(r), andJ;;(r) by their gauge-angle
dependent counterpapsr, ¢), o(r, ¢), T(r, ¢), andJ;; (r, ¢), respectively. The latter densities are calculated from
the gauge-angle dependent density matrices as

p(ro,1'e’ ) = " paa (@) P4, 0 Pu (1, 0),

ENlp, 51 =

7%

(70)
pro, 1o’ ¢) = " pua ($) P4 (1, 0o (1, 0),
where the gauge-angle dependent matrix elements read
Para@®) =D Cap@ppor:  Paa(@®) =€ Cup($)par- (71)
B B
and depend on the unprojected matrix eleméhidand on the gauge-angle dependent matrix
C(@) = [L+p? -] (72)
Functiony(¢) appearing in Eq(69)is defined as
x(¢) 1 e N det@?1)
- f = - - 77 73
y(@) a0 @) or x(¢) 7 VA (73)

wherel! is the unit matrix.

Since the gauge-angle dependent matr{@€3 and (71)are all diagonal in the same canonical basis that diag-
onalizes the unprojected density matri¢4g), all calculations are very much simplified when they are performed
in the canonical basis. In particular, in the canonical basis the mafid¢sead

i N T 74
PRI = 2 0,2 PRI =z o2
while the functionx(¢) can be calculated as
x(p) =e N l_[ (ui + ezw’vi), (75)

u>0

wherev,, andu,, (vﬁ + ui =1) are the usual canonical basis occupation amplitudes.

All the above expressions apply to independently restoring the proton and neutron numbers, so, in practice,
integrations over two gauge angles have to be simultaneously implemented. In practice, these integrations are
carried out by using a simple discretization method, which amounts to approximating the projection qp8&)ator
by a double suni39l, i.e.

= R = .
pNzZ _ T Z eidm(NfN)z ger(Z-2) (76)
1,=0 lp:()
where
T
¢qzzlq, q=n,p. (77)

Usually no more thail. = 9 points are required for a precise particle number restoration.
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3.11. Constraints

In the code HFBTHO (v1.66p), the HFB ener®) can be minimized under the constraint of a fixed quadrupole
moment. This option should be used if one is interested in the potential energy surface of a nucleus along the
quadrupole collective coordinate. The quadrupole constraint is assumed in the standard quadrpt®form

EQ=Co((0) - 0)* (78)

where(Q) is the average value of the mass-quadrupole-moment operator,
0=22—12 (79)

Q is the constraint value of the quadrupole moment, @pds the stiffness constant.

4. Program HFBTHO (v1.66p)

The code HFBTHO (v1.66p) is written in Fortran 95 wiMPDUL E definitions that specify all common arrays
and variables for other subroutines by using tIBE statements. Integer and real types of variables are automati-
cally detected for the particular computer throughkh@&D statements. The code is entirely portable. It contains
all initial data and no references to external subroutines or libraries are made.

The code requires one input data fiteh@. dat ). Optionally, in case one wants to restart calculations from a
previous run, two more filesinnn_zzz. hel and/ordnnn_zzz. t el , are required as described below. Also
optionally, if one wants to run the code for user-defined Skyrme-force parametefgyrfilees. dat is required.

The results are printed on the standard output and also recorded in théditaut . dat . The main results
are also recorded in the filémdef . dat (HO basis) and hodef . dat (THO basis), where one line is written
for every nucleus calculated, producing a concise table of results suitable for further analysdmdréies dat
andt hodef . dat are also used when restarting the given calculation after an abnormal termination (CPU time
limit or system crash). Namely, before performing a given run, the code always checks if the line corresponding
to this run is present or not in the fikmdef . dat ort hodef . dat . If this is the case, the code does not repeat
the calculation for the given run, and only the runs which have not been completed are executed. Due to this
implementation, if the user wishes to rerun the same input data filehfildef . dat andt hodef . dat have to
be first removed from the current directory.

4.1. General structure of the code

The code runs, in sequence, the set of main subroutines listeabie 1 If multiple runs are requested in a
single input data file, the code always repeats the whole sequence of calls from the beginning to end, including an
initialization of all variables and data.

4.2. Input data file

Input data are read from fileho. dat , which is shown inTable 2 The file consists of the first line, which
contains only two numbers, referred to as 11 and 12 below, followed by a sequence of identical lines, each of them
defining one specific run of the code. All numbers containing a dot are type real, and those without a dot are type
integer. In quotations there are four-character strings giving acronyms of the Skyrme forces. The code uses free
format, so at least one space is needed in order to separate the input numbers.

The code has three main modes:
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Table 1

List of main subroutines constituting the code HFBTHO (v1.66p)

Subroutine Task

DEFAULT Initializes all variables (initially, or after the previous run).

read i nput Reads parameters from the input datatfite. dat .

PREPARER Initializes variables according to the user’s request defined in the input data file.

BASEO Determines the HO configurational space and dimensions of allocatable arrays.

THOALLOC Allocates memory required for the given run of the code.

BASE Calculates and stores properties of the configurational space and all associated quantum numbers.
GAUPCOL Calculates and stores the HO basis wave functions.

I NOUT Sets or reads (optional) initial densities, fields, and matrix elements.

| TER Main iteration loop for the HFB-HO calculation, which is repeated until convergence is met. It includes the

following subroutines:

DENSI T  Calculates densities in coordinate space.

FI ELD Calculates mean fields in coordinate space.

GAMDEL  Calculates the particle-hole and pairing Hamiltonian matrices.
EXPECT  Calculates average values of observables.

HFBDI AG Diagonalizes the HFB equation.

F01234 After the HFB+HO solution is found, calculates the THO basis wave functions, which replace the HO ones.

| TER Main iteration loop for the HFB-THO calculation, which is repeated until convergence is met. The same
subroutine and sequence of calls is used as above.

RESU Calculates all required physical characteristics and canonical basis properties, and performs the particle
number projection.

I NoUT Records the final densities, fields, and matrix elements for feature use (optional).

Table 2

Input data filet ho. dat
@ ) © @@ @© O @ M 0 O & O M M @© @ @ O 6

-20 20
20 -2. O -1 300 1 70 50 ‘SLy4 -1 1 0 026 05 9 0 2 2 0.0001
20 -2. 0. -1 300 1 72 50 ‘SLy4 -1 1 0 026 05 9 0 2 =2 0.0001
20 -2. O -1 300 1 74 50 ‘'SLy4 -1 1 0 026 05 9 0 -2 2 0.0001
20 -2. 0. -1 300 1 7% 50 ‘SLy4 -1 1 0 026 05 9 0o -2 =2 0.0001
-14 -2. 0. -1 300 1 78 50 ‘'SKPP -1 1 0 026 05 9 0 4 4 0.0001
0 -2. 0. -1 300 1 70 50 ‘SLy4 -1 1 0 026 05 9 0 0 0 0.0001

(i) nucleus-after-nucleus defined by I1< 0,
(i) file-after-file, defined by 11=0,
(iii) chain-after-chain, defined by 11> 0.

In the nucleus-after-nucleusmode, the code ignores the valueg|ldff and 12, and then performs one run for
each line of the input data file that follows the first line. This is the simplest and most often used mode, illustrated
by the example given ifiable 1

In the file-after-file mode, the code ignores the value of 12, and then reads the second line of the input data
file, from where it takes all fields except from the valued df N, N, andZ. Then it performs one run for each
dnnn_zzz file found in the current directory. Filennn_zzz contain results of previous runs and are described
below.

In the chain-after-chain mode, the code reads the second line of the input data file, from where it takes all
fields except from the values @f, andZ. Then it performs one run for each nucleus in the chain of isotones or
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isotopes located between the bottom of the stability valley and the drip line. The bottom of the stability valley is
parametrically defined as

f(N,Z)=N —Z —0.006N + 2)%3=0. (80)

e If12 > 0, the code calculates the chain of isotopes for the proton nu#hkell, starting with the lowest even
neutron numbeN satisfying f (N, Z) > 0, and then step-by-step increasing the number of neutrons by two.
Calculations continue until the neutron drip line is reached, and then the program stops.

e If 12 < 0, the code calculates the chain of isotones for the neutron numbetl, starting with the lowest
even proton numbex satisfyingf (N, Z) < 0, and then step-by-step increasing the number of protons by two.
Calculations continue until the proton drip line is reached, and then the program stops.

All lines of the input data file, after the first line, contain 19 fields each. Below we denote these fields by letters
(a)—(s), as shown in the headerTatble 2 The description of the fields is as follows:

e (a) Number of oscillator shell&gp:
— If Nsh> 0, the code prints intermediate results at every iteration.
— If Nsph < 0, the code prints results at the first and last iterations only, and the modulus of the input value is
used forNsh.
— If Nsh= 0, the code stops. This value is used to indicate the end of the input data file.
For Nsh > 14, the code always begins with a short, 20-iteration run usigag= 14, and the resulting fields then
serve as a starting point for the calculation with the requested valivgrof-or the THO-basis calculations,
use of Nsp < 14 is not recommended, because precision of the HO density profile can be insufficient for a
reliable determination of the LST function.
e (b) Oscillator basis parameteg = ,/b? + bi:
— If bg > 0, the code uses this given valueigf

— If by < 0, the code uses the default valuebgt= \/2(h2/2my(41fA—1/3) for f =1.2.

e (c) DeformationBp of the HO basis. The value @ defines the HO oscillator lengths throubth = bog— /5,

b, = bog™/3, andg = exp(3./5/(16m)Ao). In particular, the value oy = 0 corresponds to the spherical HO

basis.

e (d) The THO basis control paramelelt ST:

— If I LST = 0, the code performs the HO basis calculation only.Nk N < O, the filednnn_zzz. hel is
used as the starting point.MAXI > 0, at the end of the given run filnnn_zzz. hel is written.

— If I LST = —1, the code performs the HO basis calculation followed by the THO basis calculation. If
I NI N < 0, the filednnn_zzz. hel is used as the starting point. MAXI > 0, at the end of the given
run filesdnnn_zzz. hel anddnnn_zzz. tel are written.

— If I LST =1, the code performs the THO basis calculation only. Hitenn_zzz. t el must exist and
is used as the starting point (onlyNI N < 0 is allowed). IfMAXI > O, at the end of the given run file
dnnn_zzz. t el iswritten.

e (e) Maximal number of iterationsiAXI . If the negative number is read, the absolute value is used.

— If MAXI > 0, at the end of the given run filek\nn_zzz. hel and/ordnnn_zzz. t el are written,

— If MAXI <O, filesdnnn_zzz. hel anddnnn_zzz. tel are not written, and the modulus of the input
value is used foMAXI .

o (f) The starting-point control parametieNl N:

— If I Nl N=1, the code starts from a default spherical field predefined within the code,

— If I Nl N= 2, the code starts from a default prolate field predefined within the code,

— If I Nl N= 3, the code starts from a default oblate field predefined within the code,
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Table 3
User-defined parameters of the Skyrme force, as given in thedilees. dat
Value Description
‘SLY4 Skyrme-force acronym
0 Tensor term (O—excluded, 1—included)
—0.24889134d-04 fo
0.48681804-03 fn
—0.54639504-03 2
0.13777004-05 13
0.8340000d0 X0
—0.3440000d0 X1
—1.0000000d0 X2
1.3540000d0 X3
0.12300004-03 Wo
6.0d0 Ya
20.735530d0 A2/2m
0.160d0 po (saturation density for pairing)
1.0d0 y (power of density for pairing)
60.0d0 emax (pairing cut-off energy)
0.5d0 V1 (0—volume, 1—surface, 0.5—mixed)
—244,7200d0 Vo (pairing strength)

— If I Nl N= —1, the code starts from filennn_zzz. hel orsnnn_zzz.tel,

— If I Nl N= -2, the code starts from filegnnn_zzz. hel orpnnn_zzz.tel,

— If I NI N= —3, the code starts from filennn_zzz. hel oronnn_zzz.tel.

(g) Number of neutrong/.

(h) Number of proton¥.

(i) Skyrme force character*4 acronym, e.g., ‘SlII', ‘SKP’, ‘SLY4’, or ‘'SKM*'. If value ‘READ’ is read, the

code reads the Skyrme force parameters fromffde ces. dat . An example of the filg or ces. dat is

presented iMable 3

() The Lipkin—Nogami control paramet&l NDHFB:

— If KI NDHFB = 1, Lipkin—Nogami correction not included,

— If KI NDHFB = —1, Lipkin—-Nogami correction included.

(k) The pairing-force control parametePPFORCE:

— If I PPFORCE = 0, no pairing correlations (Hartree—Fock calculation),

— If | PPFORCE = 1, calculation for the density-dependent delta pairing force,

— If I PPFORCE = 2, calculation for the density-independent delta pairing force.

(I) The quadrupole-constraint control paramdt@STR. If | CSTR = 0, the quadrupole constraint is not in-

cluded, and the next two fields (m) and (n) are not usedCBTR = 1, then:

— (m) Constrained value of the quadrupole deformafioithe value of8 defines the constrained quadrupole
momentQ in Eq.(78)through:Q = \/§<r2)’3-_

— (n) Parametemn defining the stiffnesCy of the quadratic quadrupole constraint constant®y =
n(41A7%3) /(BADE(r?)).

(o) The number of gauge-angle poirtsused for the particle number projection. Note that the code always

performs the PNP, even if pairing correlations are not included.

(p) The particle number shift control parameke3HI FT. If, | SH FT = 0, the particle number projection is

performed ornV and Z, and the next two fields (q) and (r) are not used.3H FT =1, then:

— (q) Neutron number shi€DN, i.e. the projection is performed on neutron numies KDN,

— (r) Proton number shikDZ, i.e. the projection is performed on proton num&es KDZ.
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e (S) Requested precision of convergete(in MeV). Iterations stop when changes of all mean-field and pair-
ing matrix elements between two consecutive iterations become smaller than the vV@ludRefcommended
value is 00001.

After the solution is found, and ¥AXI > 0, the code writes filednnn_zzz. hel (if the HO-basis run has
been performed) and/a@mnn_zzz. t el (if the THO-basis run has been performed). Names of these files are
automatically constructed based on the input-data paranidieny, N, andZ, namely:

e d="s','p,or‘o’, for | Nl N =1, 2, or 3, respectively,
e nnn = three-digit value ofV with leading zeros included,
e 277 = three-digit value o¥Z with leading zeros included.

These files can be used in a later run to restart calculations from previously found solutions. For example, file
s070_050. t el contains results of the THO-basis calculation ¥6Sn, which has been obtained by starting
from a spherical field. Note that the name of the file reflects the starting deformation only, while it may, in fact,
contain results for another deformation that has been obtained during the iteration.

4.3. Output files

The results are printed on the standard output file. Each run produces a separate part of the output file; also the
HO run preceding a THO run produces one such part. A test run output is included in the directory./compareoutput.
Note that the output data may differ in the final decimal places depending on the compiler used. Below we briefly
describe different sections of the output file.

e Header. Contains the version number of the code, date and time of execution, name of the element, and its
particle, neutron, and proton numbers.

Input data. Contains a short summary of the input data for the requested run.

Force. Lists the acronym and parameters of the Skyrme force, as well as parameters of the pairing force.
Numerical. Contains some information on numerical parameters and options used for the given run.
Mode. Gives the mode in which the code is run.

Iterations. Shows brief information about iterations performed. One line of the output file per each iteration is
printed and contains the following columns:

— lteration number .

— Accuracysi .

Current mixing parameter between the previous and current fiels

Quadrupole deformatidpet a, 8 = \/%ér%; , for O given in Eq.(79).

— Total energyEt ot .

— Particle numbeA.

— Neutron rms radiusn.

— Proton rms radiusp.

— Neutron pairing energgn.

— Neutron pairing gapn.

— Proton pairing energlp.

— Proton pairing gapp.

— Neutron Fermi energlyn.

— Proton Fermi energlyp.
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e Files. Contains information on thennn_zzz. hel ordnnn_zzz. t el file written.
e Observables. Lists values of various observables calculated for the HFB state without PNP and with the
Lipkin—Nogami corrections, and then those calculated for the PNP HFB state.

The same information, plus more results on the quasiparticle and canonical states, is also written to the file
t hoout . dat . However, this file is rewound after each run, so it contains results of only the last run executed for
the given input data file.

Fileshodef . dat andt hodef . dat contain synthetic results of all runs, printed in the form of a single line
per each performed run. If the given run performs only an HO-basis calculation, or only a THO-basis calculation,
then only an entry in fildhhodef . dat ort hodef . dat is produced, respectively. On the other hand, runs that
perform both HO and THO calculations produce entries in both these files. Lines in thedde$ . dat and
t hodef . dat contain 105 columns each, and each column is described by a name printed in the first header line.
The names are self-explanatory, and most often they correspond to the names used in the present write-up. Name
preceded by pertain to results obtained for the HFB states before PNP, while those beginning pétiain to
the results containing the Lipkin—Nogami corrections. Names endingtwith or p give total, neutron, or proton
observables, respectively.

5. Conclusions

The code HFBTHO (v1.66p) is a tool of choice for self-consistent calculations for a large nhumber of even—
even nuclei. Several examples of deformed HFBTHO calculations, recently implemented on parallel computers,
are given in Ref[23]. By creating a simple load-balancing routine that allows one to scale the problem to 200
processors, it was possible to calculate the entire deformed even—even nuclear mass table in a single 24 wall-clock
hour run (or approximately 4800 processor hours).

The crucial input for such calculations, which determines the quality of results, is the nuclear energy density
functional. The development of the “universal” nuclear energy density functional still remains one of the major
challenges for nuclear theory. While self-consistent HFB methods have already achieved a level of sophistication
and precision which allows analyses of experimental data for a wide range of properties and for arbitrarily heavy
nuclei (see, e.g., Ref$41-43] for deformed HFB mass table), much work remains to be done. Developing a
universal nuclear density functional will require a better understanding of the density dependence, isospin effects,
and pairing, as well as an improved treatment of symmetry-breaking effects and many-body correlations.

In addition to systematic improvements of the nuclear energy density functional, there are several anticipated
extensions of HFBTHO itself. The future enhancements to HFBTHO will include the implementation of the
full particle-number projectiotbefore variation, extension of code to odd particle numbers, implementation of
non-standard spin-orbit term and two-body center-of-mass correction, and evaluation of dynamical corrections
representing correlations beyond the mean field.
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