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Operating systems: LINUX, Windows
Programming language used: FORTRAN-95
Memory required to execute with typical data: 59 MB when usingNsh= 20
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No. of processors used: 1
Has the code been vectorized?: No
No. of bytes in distributed program, including test data, etc.: 195 285
No. of lines in distributed program: 12 058
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Nature of physical problem: The solution of self-consistent mean-field equations for weakly bound paired nuclei requ
correct description of the asymptotic properties of nuclear quasiparticle wave functions. In the present implementatio
achieved by using the single-particle wave functions of the Transformed Harmonic Oscillator, which allows for an a
description of deformation effects and pairing correlations in nuclei arbitrarily close to the particle drip lines.
Method of solution: The program uses the axially Transformed Harmonic Oscillator (THO) single-particle basis to e
quasiparticle wave functions. It iteratively diagonalizes the Hartree–Fock–Bogolyubov Hamiltonian based on the Skyrm
and zero-range pairing interaction until a self-consistent solution is found.
Restrictions on the complexity of the problem: Axial-, time-reversal-, and space-inversion symmetries are assumed.
quasiparticle vacua of even–even nuclei can be calculated.
Typical running time: 4 s per iteration on an Intel Xeon 2.8 GHz processor when usingNsh= 20
Unusual features of the program: none
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1. Introduction

Nuclear structure theory strives to build a comprehensive microscopic framework in which bulk nuclea
erties, nuclear excitations, and nuclear reactions can all be described. Exotic radioactive nuclei are the cri
focus in this quest. The extreme isospin of these nuclei and their weak binding bring new phenomena that
important features of the nuclear many-body problem.

A proper theoretical description of such weakly bound systems requires a careful treatment of the asy
part of the nucleonic density. An appropriate framework for these calculations is Hartree–Fock–Bogolyubov
theory, solved in the coordinate representation[1,2]. This method has been used extensively in the treatme
spherical nuclei[3], but is much more difficult to implement for systems with deformed equilibrium shapes. T
have been three ways of implementing deformation effects into the coordinate-space HFB. The oldest
the so-called two-basis method[4–6], is based on the diagonalization of the particle–particle part of the
Hamiltonian in the self-consistent basis, obtained by solving the HF problem with box boundary condition
disadvantage of this method is the appearance of a large number of positive-energy free-particle (box
which limits the number of discretized continuum states (the maximum single-particle energy taken in this
is usually less than 10 MeV).

The second, very promising strategy, the so-called canonical-basis HFB method, utilizes the spatial
ized eigenstates of the one-body density matrix without explicitly going to the quasiparticle representatio[7–9].
Finally, an approach to axial coordinate-space HFB has recently been developed that uses a basis-splin
[10,11]. While precise, these two latter methods are not easy to implement and, because they are time-co
cannot be used in large-scale calculations in which a crucial factor is the ability to perform quick calculati
many nuclei.
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In the absence of fast coordinate-space solutions to the deformed HFB equations, it is useful to con
stead the configuration-space approach, whereby the HFB solution is expanded in some single-particle
this context, the basis of a harmonic oscillator (HO) turned out to be particularly useful. Over the years
configuration-space HFB+HO codes have been developed, either employing Skyrme forces or the Gogny ef
interaction[12–16], or using a relativistic Lagrangian[17] in the context of the relativistic Hartree–Bogolyub
theory. For nuclei at the drip lines, however, the HFB+HO expansion converges slowly as a function of the num
of oscillator shells[3], producing wave functions that decay too rapidly at large distances.

A related alternative approach that has recently been proposed is to expand the quasiparticle HFB wave
in a complete set of transformed harmonic oscillator (THO) basis states[18], obtained by applying a local-scalin
coordinate transformation (LST)[19,20] to the standard HO basis. Applications of this HFB+THO methodology
have been reported both in the nonrelativistic[21] and relativistic domains[22]. In all of these calculations, specifi
global parameterizations were employed for the scalar LST function that defines the THO basis. There ar
limitations in such an approach, however. For example, the minimization procedure that is needed in
approach to optimally define the basis parameters is computationally very time-consuming, making it very
to apply the method systematically to nuclei across the periodic table.

Recently, a new prescription for choosing the THO basis has been proposed and employed in self-c
large-scale calculations[23]. For a given nucleus, the new prescription requires as input the results from a rel
simple HFB+HO calculation, with no variational optimization. The resulting THO basis leads to HFB+THO
results that almost exactly reproduce the coordinate-space HFB results for spherical nuclei[24]. Because the new
prescription requires no variational optimization of the LST function, it can be applied in systematic stu
nuclear properties. In order to correct for the particle number nonconservation inherent to the HFB appro
Lipkin–Nogami prescription for an approximate particle number projection, followed by an exact particle n
projection after the variation has been implemented in the code HFBTHO (v1.66p)[25,26].

The paper is organized as follows. Section2 gives a brief summary of the HFB formalism. The implementat
of the method to the case of the Skyrme energy density functional is discussed in Section3, together with the
overview of the THO method and the treatment of pairing. Section4 describes the code HFBTHO (v1.66p). Fina
conclusions are given in Section5.

2. Hartree–Fock–Bogolyubov method

A two-body Hamiltonian of a system of fermions can be expressed in terms of a set of annihilation and c
operators(c, c†):

(1)H =
∑
n1n2

en1n2c
†
n1

cn2 + 1

4

∑
n1n2n3n4

vn1n2n3n4c
†
n1

c†
n2

cn4cn3,

wherevn1n2n3n4 = 〈n1n2|V |n3n4 − n4n3〉 are anti-symmetrized two-body interaction matrix-elements. In the H
method, the ground-state wave function|Φ〉 is defined as the quasiparticle vacuumαk|Φ〉 = 0, where the quasipa
ticle operators(α,α†) are connected to the original particle operators via a linear Bogolyubov transformatio

(2)αk =
∑
n

(
U∗

nkcn + V ∗
nkc

†
n

)
, α

†
k =

∑
n

(
Vnkcn + Unkc

†
n

)
,

which can be rewritten in the matrix form as

(3)

(
α

α†

)
=

(
U† V †

V T UT

)(
c

c†

)
.

The matricesU andV satisfy the relations:

(4)U†U + V †V = I, UU† + V ∗V T = I, UTV + V TU = 0, UV † + V ∗UT = 0.
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In terms of the normalρ and pairingκ one-body density matrices, defined as

(5)ρnn′ = 〈
Φ

∣∣c†
n′cn

∣∣Φ〉 = (V ∗V T)nn′ , κnn′ = 〈Φ|cn′cn|Φ〉 = (V ∗UT)nn′ ,

the expectation value of the Hamiltonian(1) is expressed as an energy functional

(6)E[ρ,κ] = 〈Φ|H |Φ〉
〈Φ|Φ〉 = Tr

[(
e + 1

2
Γ

)
ρ

]
− 1

2
Tr[�κ∗],

where

(7)Γn1n3 =
∑
n2n4

vn1n2n3n4ρn4n2, �n1n2 = 1

2

∑
n3n4

vn1n2n3n4κn3n4.

The variation of the energy(6) with respect toρ andκ results in the HFB equations:

(8)

(
e + Γ − λ �

−�∗ −(e + Γ )∗ + λ

)(
U

V

)
= E

(
U

V

)
,

where the Lagrange multiplierλ has been introduced to fix the correct average particle number.
It should be stressed that the modern energy functionals(6) contain terms that cannot be simply related

some prescribed effective interaction, see, e.g., Refs.[27,28]for details. In this respect the functional(6) should be
considered in the broader context of the energy density functional theory.

3. Skyrme Hartree–Fock–Bogolyubov method

3.1. Skyrme energy density functional

For Skyrme forces, the HFB energy(6) has the form of a local energy density functional,

(9)E[ρ, ρ̃] =
∫

d3r H(r),

where

(10)H(r) = H(r) + H̃ (r)

is the sum of the mean-field and pairing energy densities. In the present implementation, we use the f
explicit forms:

H(r) = h̄2

2m
τ + 1

2
t0

[(
1+ 1

2
x0

)
ρ2 −

(
1

2
+ x0

)∑
q

ρ2
q

]

+ 1

2
t1

[(
1+ 1

2
x1

)
ρ

(
τ − 3

4
�ρ

)
−

(
1

2
+ x1

)∑
q

ρq

(
τq − 3

4
�ρq

)]

+ 1

2
t2

[(
1+ 1

2
x2

)
ρ

(
τ + 1

4
�ρ

)
−

(
1

2
+ x2

)∑
q

ρq

(
τq + 1

4
�ρq

)]

+ 1

12
t3ρ

α

[(
1+ 1

2
x3

)
ρ2 −

(
x3 + 1

2

)∑
q

ρ2
q

]

(11)− 1

8
(t1x1 + t2x2)

∑
J2
ij + 1

8
(t1 − t2)

∑
J2
q,ij − 1

2
W0

∑
εijk

[
ρ∇kJij +

∑
ρq∇kJq,ij

]

ij q,ij ijk q
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(12)H̃ (r) = 1

2
V0

[
1− V1

(
ρ

ρ0

)γ ]∑
q

ρ̃2
q .

The indexq labels the neutron (q = n) or proton (q = p) densities, while densities without index denote the su
of proton and neutron densities.H(r) andH̃ (r) depend on the local particle densityρ(r), local pairing density
ρ̃(r), kinetic energy densityτ(r), and spin-current densityJij (r):

(13)
ρ(r) = ρ(r , r), ρ̃(r) = ρ̃(r , r),

τ (r) = ∇r∇r ′ρ(r , r ′)|r ′=r , Jij (r) = 1

2i
(∇i − ∇′

i )ρj (r , r ′)|r ′=r ,

whereρ(r , r ′), ρi(r , r ′), ρ̃(r , r ′), ρ̃i (r , r ′) are defined by the spin-dependent one-body density matrices i
standard way:

(14)

ρ(rσ, r ′σ ′) = 1

2
ρ(r , r ′)δσσ ′ + 1

2

∑
i

(σ |σi |σ ′)ρi(r , r ′),

ρ̃(rσ, r ′σ ′) = 1

2
ρ̃(r , r ′)δσσ ′ + 1

2

∑
i

(σ |σi |σ ′)ρ̃i(r , r ′).

We use the pairing density matrix̃ρ,

(15)ρ̃(rσ, r ′σ ′) = −2σ ′κ(r , σ, r ′,−σ ′),

instead of the pairing tensorκ . This is convenient for describing time-even quasiparticle states when bothρ andρ̃

are hermitian and time-even[2]. In the pairing energy density(12), we have restricted our consideration to cont
(delta) pairing forces in order to reduce the complexity of the general expressions[2,28].

3.2. Skyrme Hartree–Fock–Bogolyubov equations

The variation of the energy(9) with respect toρ andρ̃ results in the Skyrme HFB equations:

(16)
∑
σ ′

(
h(r , σ, σ ′) h̃(r , σ, σ ′)
h̃(r , σ, σ ′) −h(r , σ, σ ′)

)(
U(E, rσ ′)
V (E, rσ ′)

)
=

(
E + λ 0

0 E − λ

)(
U(E, rσ)

V (E, rσ)

)
,

where local fieldsh(r , σ, σ ′) andh̃(r , σ, σ ′) can be easily calculated in the coordinate space by using the follo
explicit expressions:

(17)

hq(r , σ, σ ′) = −∇Mq∇ + Uq + 1

2i

∑
ij

(∇iσjBq,ij + Bq,ij∇iσj t),

h̃q(r , σ, σ ′) = V0

(
1− V1

(
ρ

ρ0

)γ )
ρ̃q ,

where

Mq = h̄2

2m
+ 1

4
t1

[(
1+ 1

2
x1

)
ρ −

(
x1 + 1

2

)
ρ2

q

]
+ 1

4
t2

[(
1+ 1

2
x2

)
ρ +

(
x2 + 1

2

)
ρ2

q

]
,

Bq,ij = −1

4
(t1x1 + t2x2)Jij + 1

4
(t1 − t2)Jq,ij + 1

2
W0

∑
εijk∇k(ρ + ρq),
ijk
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(18)

Uq = t0

[(
1+ 1

2
x0

)
ρ −

(
x0 + 1

2

)
ρq

]

+ 1

4
t1

[(
1+ 1

2
x1

)(
τ − 3

2
�ρ

)
−

(
x1 + 1

2

)(
τq − 3

2
�ρq

)]

+ 1

4
t2

[(
1+ 1

2
x2

)(
τ + 1

2
�ρ

)
+

(
x2 + 1

2

)(
τq + 1

2
�ρq

)]

+ 1

12
t3ρ

α

[(
1+ 1

2
x3

)
(2+ α)ρ −

(
x3 + 1

2

)(
2ρq + α

ρ

∑
q ′

ρ2
q ′

)]

− γV0V1

2ρ

(
ρ

ρ0

)γ ∑
q

ρ̃2
q − 1

2
W0

∑
ijk

εijk∇k[Jij + Jq,ij ].

The properties of the HFB equation in spatial coordinates, Eq.(16), have been discussed in Ref.[2]. In particular,
it has been shown that the spectrum of eigenenergiesE is continuous for|E| > −λ and discrete for|E| < −λ. In
the present implementation, we solve the HFB equations by expanding quasiparticle wave functions in
basis; therefore, the quasiparticle spectrumEk becomes discretized. Hence in the following we use the nota
Vk(rσ) = V (Ek, rσ) andUk(rσ) = U(Ek, rσ). Since forEk > 0 andλ < 0 the lower componentsVk(rσ) are
localized functions ofr , the density matrices,

(19)ρ(rσ, r ′σ ′) =
∑

k

Vk(rσ)V ∗
k (r ′σ ′),

(20)ρ̃(rσ, r ′σ ′) = −
∑

k

Vk(rσ)U∗
k (r ′σ ′),

are always localized. The orthogonality relation for the single-quasiparticle HFB wave functions reads

(21)
∫

d3r
∑
σ

[
U∗

k (rσ)Uk′(rσ) + V ∗
k (rσ)Vk′(rσ)

] = δk,k′ ,

and the norms of the lower componentsNk ,

(22)Nk =
∫

d3r
∑
σ

∣∣Vk(rσ)
∣∣2,

define the total number of particles

(23)N =
∫

d3rρ(r) =
∑
n

Nk.

3.3. Axially deformed nuclei

For spherical nuclei, the Skyrme HFB equations are best solved in the coordinate space, because Eq.(16)reduces
in this case to a set of radial differential equations[29]. In the case of deformed nuclei, however, the solution
deformed HFB equation in coordinate space is a difficult and time-consuming task. For this reason, here w
method proposed by Vautherin[30], which combines two different representations. The solution of the defo
HFB equation is carried out by diagonalizing the HFB Hamiltonian in the configurational space of wave-fun
with appropriate symmetry, while evaluation of the potentials and densities is performed in coordinate spa
a method is applicable to nonaxial deformations[16], but typical computation times for large-scale mass-ta
calculations are prohibitively large. In the present implementation, we make the restriction to axially-sym
and reflection-symmetric shapes in order to obtain HFB solutions within a much shorter CPU time.
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In the case of axial symmetry, the third componentJz of the total angular momentum is conserved and prov
a good quantum numberΩk . Therefore, quasiparticle HFB states can be written in the following form:

(24)

(
Uk(r , σ, τ )

Vk(r , σ, τ )

)
= χqk

(τ )

[(
U+

k (r, z)

V +
k (r, z)

)
eiΛ−ϕχ+1/2(σ ) +

(
U−

k (r, z)

V −
k (r, z)

)
eiΛ+ϕχ−1/2(σ )

]
,

whereΛ± = Ωk ± 1/2 andr , z, andϕ are the standard cylindrical coordinates defining the three-dimens
position vector asr = (r cosϕ, r sinϕ, z), while z is the chosen symmetry axis. The quasiparticle states(24) are
also assumed to be eigenstates of the third component of the isospin operator with eigenvaluesqk = +1/2 for
protons andqk = −1/2 for neutrons.

By substituting ansatz(24) into Eq. (16), the HFB equation reduces to a system of equations involving
cylindrical variablesr andz only. The same is also true for the local densities, i.e.

ρ(r, z) =
∑

k

(∣∣V +
k (r, z)

∣∣2 + ∣∣V −
k (r, z)

∣∣2),

(25)

τ(r, z) =
∑

k

(∣∣∇rV
+
k (r, z)

∣∣2 + ∣∣∇rV
−
k (r, z)

∣∣2 + 1

r2

∣∣Λ+V −
k (r, z)

∣∣2

+ ∣∣∇zV
+
k (r, z)

∣∣2 + ∣∣∇zV
−
k (r, z)

∣∣2 + 1

r2

∣∣Λ−V +
k (r, z)

∣∣2),

(∇ · J)(r, z) =
∑

k

(
∇rV

+
k (r, z)∇zV

−
k (r, z) + Λ−

r
V +

k (r, z)
[∇rV

+
k (r, z) − ∇zV

−
k (r, z)

]

− ∇rV
−
k (r, z)∇zV

+
k (r, z) − Λ+

r
V −

k (r, z)
[∇rV

−
k (r, z) + ∇zV

+
k (r, z)

])
,

ρ̃(r, z) = −
∑

k

(
V +

k (r, z)U+
k (r, z) + V −

k (r, z)U−
k (r, z)

)
,

where∇r = ∂/∂r and∇z = ∂/∂z. When tensor forces are considered, the following additional densities have
calculated:

Jrϕ(r, z) =
∑

k

(∇rV
+
k (r, z)V −

k (r, z) − ∇rV
−
k (r, z)V +

k (r, z)
)
,

(26)

Jϕr(r, z) =
∑

k

(
Λ−

r
V +

k (r, z)V −
k (r, z) + Λ+

r
V −

k (r, z)V +
k (r, z)

)
,

Jzϕ(r, z) =
∑

k

(∇zV
+
k (r, z)V −

k (r, z) − ∇zV
−
k (r, z)V +

k (r, z)
)
,

Jϕz(r, z) =
∑

k

(
Λ−

r
V +

k (r, z)V +
k (r, z) − Λ+

r
V −

k (r, z)V −
k (r, z)

)
,

where indices denote the cylindrical components of the tensorJij , while all remaining components vanish due
the cylindrical symmetry, i.e.Jrr (r, z) = Jzz(r, z) = Jϕϕ(r, z) = Jrz(r, z) = Jzr (r, z) = 0.

Due to the time-reversal symmetry, if thekth state, defined by the set{U+
k ,U−

k ,V +
k ,V −

k ,Ωk}, satisfies the HFB
equation(16), then thek̄th state, corresponding to the set defined by{U+

k ,−U−
k ,V +

k ,−V −
k ,−Ωk}, also satisfies

the HFB equation for the same quasiparticle energyEk . Moreover, all wave functions in cylindrical coordinat
are real. The contributions from the time-reversed statesk andk̄ are identical (we assume that the set of occup
states is invariant with respect to the time-reversal), and we can restrict all summations to positive valueΩ
k
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while multiplying total results by a factor two. In a similar way, one can see that due to the assumed re
symmetry, only positive values ofz need to be considered.

3.4. HO and THO wave functions

The solution of the HFB equation(16) is obtained by expanding the quasiparticle function(24) in a given
complete set of basis wave functions that conserve axial symmetry and parity. The program HFBTHO (v1
able to do so for the two basis sets of wave functions: HO and THO.

The HO set consists of eigenfunctions of a single-particle Hamiltonian for an axially deformed harmonic
lator potential. By using the standard oscillator constants:

(27)βz = 1

bz

=
(

mωz

h̄

)1/2

, β⊥ = 1

b⊥
=

(
mω⊥

h̄

)1/2

,

and auxiliary variables

(28)ξ = zβz, η = r2β2⊥,

the HO eigenfunctions are written explicitly as

(29)Φα(r , σ ) = ψΛ
nr

(r)ψnz(z)
eiΛϕ

√
2π

χΣ(σ),

where

(30)
ψΛ

nr
(r) = β⊥ψ̃Λ

nr
(η) = NΛ

nr
β⊥

√
2η|Λ|/2e−η/2L

|Λ|
nr

(η),

ψnz(z) = β
1/2
z ψ̃nz(ξ) = Nnzβ

1/2
z e−ξ2/2Hnz(ξ).

Hnz(ξ) andLΛ
nr

(η) denote the Hermite and associated Laguerre polynomials[31], respectively, and the normaliz
tion factors read

(31)Nnz =
(

1√
π2nznz!

)1/2

and NΛ
nr

=
(

nr !
(nr + |Λ|)!

)1/2

.

The set of quantum numbersα = {nr, nz,Λ,Σ} includes the numbers of nodes,nr and nz, in the r- and z-
directions, respectively, and the projections on thez-axis,Λ andΣ , of the angular momentum operator and
spin.

The HO energy associated with the HO state(29) reads

(32)εα = (
2nr + |Λ| + 1

)
h̄ω⊥ +

(
nz + 1

2

)
h̄ωz,

and the basis used by the code consists ofM0 = (Nsh+1)(Nsh+2)(Nsh+3)/6 states having the lowest energiesεα

for the given frequencies̄hω⊥ andh̄ωz. In this way, for the spherical basis, i.e. forh̄ω⊥ = h̄ωz, all HO shells with
the numbers of quantaN = 0, . . . ,Nsh are included in the basis. When the basis becomes deformed,h̄ω⊥ �= h̄ωz,
the code selects the lowest-HO-energy basis states by checking the HO energies of all states up to 50 H
Note that in this case the maximum value of the quantum numberΩk , and the number of blocks in which the HF
equation is diagonalized, see Section3.5, depend on the deformation of the basis.

The THO set of basis wave functions consists of transformed harmonic oscillator functions, which are ge
by applying the local scale transformation (LST)[19,20,32]to the HO single-particle wave functions(29). In the
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axially deformed case, the LST acts only on the cylindrical coordinatesr andz, i.e.

(33)
r → r ′ ≡ r ′(r, z) = r

f (R)

R ,

z → z′ ≡ z′(r, z) = z
f (R)

R ,

and the resulting THO wave functions read

(34)Φα(r , σ ) =
√

f 2(R)

R2

∂f (R)

∂R ψΛ
nr

(
r

Rf (R)

)
ψnz

(
z

Rf (R)

)
eiΛϕ

√
2π

χΣ(σ),

where

(35)R =
√

z2

b2
z

+ r2

b2⊥
,

andf (R) is a scalar LST function. In the code HFBTHO (v1.66p), the functionf (R) is chosen as in Ref.[23]. It
transforms the incorrect Gaussian asymptotic behavior of deformed HO wave functions into the correct exp
form. Below, we keep the same notationΦα(r , σ ) for both HO and THO wave functions, because expression
which they enter are almost identical in both cases and are valid for both HO and THO variants.

3.5. HFB diagonalization in configurational space

We use the same basis wave functions to expand upper and lower components of the quasiparticle sta

(36)

Uk(r , σ, τ ) = χqk
(τ )

∑
α

UkαΦα(r , σ ),

Vk(r , σ, τ ) = χqk
(τ )

∑
α

VkαΦα(r , σ ),

whereΦα(r , σ ) are the HO or THO basis states. Note that the same basisΦα(r , σ ) is used for protons and neutron
Inserting expression(36) into the HFB equation(16)and using the orthogonality of the basis states, we find

the expansion coefficients have to be eigenvectors of the HFB Hamiltonian matrix

(37)

(
h(qk) − λ(qk) h̃(qk)

h̃(qk) −h(qk) + λ(qk)

)(
Uk

Vk

)
= Ek

(
Uk

Vk

)
,

where the quasiparticle energiesEk , the chemical potentialλ(qk), and the matrices

(38)h
(q)
αβ = 〈Φα|hq |Φβ〉 and h̃

(q)
αβ = 〈Φα|h̃q |Φβ〉

are defined for a given proton (qk = +1/2) or neutron (qk = −1/2) block.
Proton and neutron blocks are decoupled and can be diagonalized separately. Furthermore, in the case

deformed nuclei considered here,Ωk = Λk + Σk is a good quantum number and, therefore, the matricesh
(q)
αβ and

h̃
(q)
αβ are block diagonal, each block being characterized by a given value ofΩ . Moreover, for the case of conserv

parity considered here,π = (−1)nz+Λ is also a good quantum number, and each of theΩk blocks falls into two
sub-blocks characterized by the values ofπ = ±1. Finally, due to the time-reversal symmetry, the Hamilton
matrices need to be constructed for positive values ofΩ only.
k
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3.6. Calculations of matrix elements

As discussed in Section3.2, local densities(25) and average fields,(17) and (18), are calculated in coordinat
space. Therefore, the calculation of matrix elements(38) amounts to calculating appropriate spatial integral
the cylindrical coordinatesr andz. In practice, the integration is carried out by using Gaussian quadrature[31]
for 22 Gauss–Hermite points in thez > 0 direction and 22 Gauss–Laguerre points in ther-direction. This gives a
sufficient accuracy for calculations up toNsh= 40.

In the case of the HO basis functions, the integration is performed by using the Gauss integration pointsξn and
ηm, for which the local densities and fields have to be calculated at the mesh points ofzn = bzξn andrm = b⊥η

1/2
m .

As an example, consider the following diagonal matrix element of the potentialUq(r, z) (18),

(39)Uq
αα =

∞∫
−∞

dz

∞∫
0

r dr Uq(z, r)ψ2
nz

(z)ψΛ
nr

2
(r).

Inserting here the HO functionsψ2
nz

(z) andψΛ
nr

2
(r) (29), and changing the integration variables to dimension

variablesξ andη, the above matrix element reads

(40)Uq
αα =

∞∫
−∞

dξ

∞∫
0

dη Ũq(ξ, η)ψ̃2
nz

(ξ)ψ̃Λ2
nr

(η),

where

(41)Ũq(ξ, η) = 1

2
Uq(ξbz,

√
η b⊥).

Here, Gaussian quadrature can be applied directly, because the HO wave functions contain appropriate ex
profile functions.

The situation is a little bit more complicated in the case of the THO basis states where, before calculat
has to change variables with respect to the LST functionsf (R). For example, let us consider the same ma
elements(39)but in THO representation:

(42)Uq
αα =

∞∫
−∞

dz

∞∫
0

r dr Uq(z, r)

[
f 2(R)

R2

df (R)

dR

]
ψ2

nz

(
zf (R)

R

)
ψΛ

nr

2
(

r2f 2(R)

R2

)
.

Introducing new dimensionless variables

(43)ξ = z

bz

f (R)

R , η = r2

b2⊥

f 2(R)

R2
,

for which we have

(44)dξ dη = 2

bzb
2⊥

[
f 2(R)

R2

df (R)

dR

]
r dr dz,

the matrix elements have the form of integrals, which are exactly identical to those in the HO basis(40), after
changing the functioñUq(ξ, η) to

(45)Ũq(ξ, η) = 1

2
Uq

(
ξbz

R
f (R)

,
√

η b⊥
R

f (R)

)
.

The calculation of matrix elements corresponding to derivative terms in the Hamiltonian(17) can be performed in

an analogous way, after the derivatives of the Jacobian,f 2(R) df (R) , are taken into account.
R2 dR
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3.7. Calculation of local densities

After diagonalizing the HFB equation(37), local densities are calculated as

(46)ρ(rσ, r ′σ ′) =
∑
αβ

ραβΦ∗
α(rσ)Φβ(r ′σ ′), ρ̃(rσ, r ′σ ′) =

∑
αβ

ρ̃αβΦ∗
α(rσ)Φβ(r ′σ ′),

whereΦα(rσ) denotes the HO or THO basis wave functions, and the matrix elements of mean-field and
density matrices read

(47)ραβ =
∑

k

V ∗
αkVβk, ρ̃αβ = −

∑
k

V ∗
αkUβk.

The HFB calculations for a zero-range pairing interaction give divergent energies when increasing the
of quasiparticle states in the sums of Eq.(47) (see the discussion in Ref.[3]). Therefore, they invariably requir
a truncation of the quasiparticle basis by introducing a cut-off for the quasiparticle energy and including o
quasiparticle states up to this value.

The choice of an appropriate cut-off procedure has been discussed in[2]. After each iteration, performed with
given Fermi energyλ, one calculates an equivalent spectrumēk and pairing gaps̄�k :

(48)ēk = (1− 2Nk)Ek, �̄k = 2Ek

√
Nk(1− Nk),

whereNk denotes the norm(23)of the lower HFB wave function. Using this spectrum and pairing gaps, the F
energy is readjusted to obtain the correct value of particle number, and this new value is used in the n
iteration.

Due to the similarity between the equivalent spectrumēk and the single-particle energies, one can take
account only those quasiparticle states for which

(49)ēk � ēmax,

whereēmax > 0 is a parameter defining the amount of the positive-energy phase space taken into accoun
all hole-like quasiparticle states,Nk < 1/2, have negative values ofēk , condition(49) guarantees that they are a
taken into account. In this way, a global cut-off prescription is defined which fulfills the requirement of takin
account the positive-energy phase space as well as all quasiparticle states up to the highest hole-like qua
energy. In the code, a default value ofēmax= 60 MeV is used.

3.8. Coulomb interaction

In the case of proton states, one has to add to the central potential the direct Coulomb field

(50)V C
d (r) = e2

∫
d3r ′ ρp(r ′)

|r − r ′| ,
as well as the exchange Coulomb field, which in the present implementation is treated within the Slater a
mation:

(51)V C
ex(r) = −e2

(
3

π

)1/3

ρ
1/3
p (r).

The integrand in the direct term(50) has a logarithmic singularity at the pointr = r ′. A way to bypass this
difficulty is to use the Vautherin prescription[30], i.e. to employ the identity

(52)�r ′ |r − r ′| = 2/|r − r ′|,
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and then integrate by parts the integral in Eq.(50). As a results, one obtains a singularity-free expression

(53)V C
d (r) = e2

2

∫
d3r ′|r − r ′|�r ′ρp(r ′).

In cylindrical coordinates, after integrating over the azimuthal angleϕ, one finds

(54)V C
d (r ′, z′) = 2e2

∞∫
0

r dr

∞∫
−∞

dz
√

d(r, z)E

(
4rr ′

d(r, z)

)
�ρp(r, z),

whered(r, z) = [(z − z′)2 + (r + r ′)2] andE(x) is the complete elliptic integral of the second kind that can
approximated by a standard polynomial formula[31].

Equivalently, one can use the prescription developed originally for calculations with the finite-range (G
force[3]. It consists of expressing the Coulomb force as a sum of Gaussians:

(55)
1

|r − r ′| = 2√
π

∞∫
0

dµ

µ2
e−(r−r ′)2/µ2

,

which gives

(56)V C
d (r) = e2 2√

π

∞∫
0

dµ

µ2
Iµ(r),

where the integral

(57)Iµ(r) =
∫

d3r ′e−(r−r ′)2/µ2
ρ(r ′)

can be easily calculated in cylindrical coordinates. After integrating over the azimuthal angleϕ, one finds

(58)Iµ(r ′, z′) = 2π

∞∫
0

r dr

∞∫
−∞

dze−(r2+r ′2+(z−z′)2
)/µ2

I0

(
2rr ′

µ2

)
ρp(r, z),

whereI0(x) is the Bessel function that can also be approximated by a standard polynomial formula[31].
In order to perform the remaining one-dimensional integration in Eq.(56), the variableµ is changed to

(59)ξ = b/

√
b2 + µ2,

whereb is the largest of the two HO lengthsbz andb⊥. This change of variable is very convenient, since then
range of integration becomes[0,1]. The integral(56) is accurately computed by using a 30-point Gauss–Lege
quadrature with respect toξ .

We have tested the precision of both prescriptions, Eqs.(53) and (56), and checked that the second one gi
better results within the adopted numbers of Gauss–Hermite and Gauss–Laguerre points that are used fo
ing proton densities. Therefore, in the code HFBTHO (v1.66p) this second prescription is used, while the
remains in the code, but is inactive.

3.9. Lipkin–Nogami method

The LN method constitutes an efficient method for approximately restoring the particle numbers bef
variation [33]. With only a slight modification of the HFB procedure outlined above, it is possible to obt
very good approximation for the optimal HFB state, on which an exact particle number projection then ha
performed[34,35].
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In more detail, the LN method is implemented by performing the HFB calculations with an additiona
included in the HF Hamiltonian,

(60)h′ = h − 2λ2(1− 2ρ),

and by iteratively calculating the parameterλ2 (separately for neutrons and protons) so as to properly describ
curvature of the total energy as a function of particle number. For an arbitrary two-body interactionV̂ , λ2 can be
calculated from the particle-number dispersion according to[33],

(61)λ2 = 〈0|V̂ |4〉〈4|N̂2|0〉
〈0|N̂2|4〉〈4|N̂2|0〉 ,

where|0〉 is the quasiparticle vacuum,̂N is the particle number operator, and|4〉〈4| is the projection operator ont
the 4-quasiparticle space. On evaluating all required matrix elements, one obtains[36]

(62)λ2 = 4 TrΓ ′ρ(1− ρ) + 4 Tr�′(1− ρ)κ

8[Trρ(1− ρ)]2 − 16 Trρ2(1− ρ)2
,

where the potentials

(63)Γ ′
αα′ =

∑
ββ ′

Vαβα′β ′
(
ρ(1− ρ)

)
β ′β, �′

αβ = 1

2

∑
α′β ′

Vαβα′β ′(ρκ)α′β ′ ,

can be calculated in full analogy toΓ and� by replacingρ andκ by ρ(1− ρ) andρκ , respectively. In the case o
the seniority-pairing interaction with strengthG, Eq.(62)simplifies to

(64)λ2 = G

4

Tr(1− ρ)κ Trρκ − 2 Tr(1− ρ)2ρ2

[Trρ(1− ρ)]2 − 2 Trρ2(1− ρ)2
.

An explicit calculation ofλ2 from Eq.(62) requires calculating new sets of fields(63), which is rather cumber
some. However, we have found[25] that Eq.(62) can be well approximated by the seniority-pairing express
(64)with the effective strength

(65)G = Geff = − �̄2

Epair

determined from the pairing energy

(66)Epair = −1

2
Tr�κ

and the average pairing gap

(67)�̄ = Tr�ρ

Trρ
.

Such a procedure is implemented in the code HFBTHO (v1.66p).

3.10. Particle-number projection after variation

Introducing the particle-number projection operator forN particles,

(68)P N = 1

2π

∫
dφ eiφ(N̂−N),

whereN̂ is the number operator, the average HFB energy of the particle-number projected state can be exp
an integral over the gauge angleφ of the Hamiltonian matrix elements between states with different gauge a
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[37,38]. In particular, for the Skyrme-HFB method implemented here, the particle-number projected energy
written as[25,26]

(69)EN [ρ, ρ̃] = 〈Φ|HP N |Φ〉
〈Φ|P N |Φ〉 =

∫
dφ y(φ)

∫
d3r H(r , φ),

where the gauge-angle dependent energy densityH(r , φ) is derived from the unprojected energy densityH(r)
(10)by simply substituting the particle and pairing local densitiesρ(r), ρ̃(r), τ(r), andJij (r) by their gauge-angle
dependent counterpartsρ(r , φ), ρ̃(r , φ), τ(r , φ), andJij (r , φ), respectively. The latter densities are calculated fr
the gauge-angle dependent density matrices as

(70)

ρ(rσ, r ′σ ′, φ) =
∑
αα′

ραα′(φ)Φ∗
α′(r ′, σ ′)Φα(r , σ ),

ρ̃(rσ, r ′σ ′, φ) =
∑
αα′

ρ̃αα′(φ)Φ∗
α′(r ′, σ ′)Φα(r , σ ),

where the gauge-angle dependent matrix elements read

(71)ρα′α(φ) =
∑
β

Cαβ(φ)ρβα′ , ρ̃α′α(φ) = e−iφ
∑
β

Cαβ(φ)ρ̃βα′ ,

and depend on the unprojected matrix elements(47)and on the gauge-angle dependent matrix

(72)C(φ) = e2iφ[
1+ ρ(e2iφ − 1)

]−1
.

Functiony(φ) appearing in Eq.(69) is defined as

(73)y(φ) = x(φ)∫
dφ′ x(φ′)

for x(φ) = 1

2π

e−iφN det(eiφI)√
detC(φ)

,

whereI is the unit matrix.
Since the gauge-angle dependent matrices(70) and (71)are all diagonal in the same canonical basis that d

onalizes the unprojected density matrices(47), all calculations are very much simplified when they are perform
in the canonical basis. In particular, in the canonical basis the matrices(71) read

(74)ρµ(φ) = e2iφv2
µ

u2
µ + e2iφv2

µ

and ρ̃µ(φ) = eiφuµvµ

u2
µ + e2iφv2

µ

,

while the functionx(φ) can be calculated as

(75)x(φ) = e−iNφ
∏
µ>0

(
u2

µ + e2iφv2
µ

)
,

wherevµ anduµ (v2
µ + u2

µ = 1) are the usual canonical basis occupation amplitudes.
All the above expressions apply to independently restoring the proton and neutron numbers, so, in

integrations over two gauge angles have to be simultaneously implemented. In practice, these integra
carried out by using a simple discretization method, which amounts to approximating the projection opera(68)
by a double sum[39], i.e.

(76)P NZ = 1

L

L−1∑
ln=0

eiφn(N̂−N) 1

L

L−1∑
lp=0

eiφp(Ẑ−Z),

where

(77)φq = π

L
lq, q = n,p.

Usually no more thanL = 9 points are required for a precise particle number restoration.
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3.11. Constraints

In the code HFBTHO (v1.66p), the HFB energy(9) can be minimized under the constraint of a fixed quadrup
moment. This option should be used if one is interested in the potential energy surface of a nucleus a
quadrupole collective coordinate. The quadrupole constraint is assumed in the standard quadratic form[40]:

(78)EQ = CQ

(〈Q̂〉 − Q̄
)2

,

where〈Q̂〉 is the average value of the mass-quadrupole-moment operator,

(79)Q̂ = 2z2 − r2,

Q̄ is the constraint value of the quadrupole moment, andCQ is the stiffness constant.

4. Program HFBTHO (v1.66p)

The code HFBTHO (v1.66p) is written in Fortran 95 withMODULE definitions that specify all common arra
and variables for other subroutines by using theUSE statements. Integer and real types of variables are auto
cally detected for the particular computer through theKIND statements. The code is entirely portable. It conta
all initial data and no references to external subroutines or libraries are made.

The code requires one input data file (tho.dat). Optionally, in case one wants to restart calculations fro
previous run, two more files,dnnn_zzz.hel and/ordnnn_zzz.tel, are required as described below. Al
optionally, if one wants to run the code for user-defined Skyrme-force parameters, fileforces.dat is required.

The results are printed on the standard output and also recorded in the filethoout.dat. The main results
are also recorded in the fileshodef.dat (HO basis) andthodef.dat (THO basis), where one line is writte
for every nucleus calculated, producing a concise table of results suitable for further analyses. Fileshodef.dat
andthodef.dat are also used when restarting the given calculation after an abnormal termination (CP
limit or system crash). Namely, before performing a given run, the code always checks if the line corresp
to this run is present or not in the filehodef.dat or thodef.dat. If this is the case, the code does not rep
the calculation for the given run, and only the runs which have not been completed are executed. Du
implementation, if the user wishes to rerun the same input data file, fileshodef.dat andthodef.dat have to
be first removed from the current directory.

4.1. General structure of the code

The code runs, in sequence, the set of main subroutines listed inTable 1. If multiple runs are requested in
single input data file, the code always repeats the whole sequence of calls from the beginning to end, incl
initialization of all variables and data.

4.2. Input data file

Input data are read from filetho.dat, which is shown inTable 2. The file consists of the first line, whic
contains only two numbers, referred to as I1 and I2 below, followed by a sequence of identical lines, each
defining one specific run of the code. All numbers containing a dot are type real, and those without a dot
integer. In quotations there are four-character strings giving acronyms of the Skyrme forces. The code u
format, so at least one space is needed in order to separate the input numbers.

The code has three main modes:
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Table 1
List of main subroutines constituting the code HFBTHO (v1.66p)

Subroutine Task

DEFAULT Initializes all variables (initially, or after the previous run).
read input Reads parameters from the input data filetho.dat.
PREPARER Initializes variables according to the user’s request defined in the input data file.
BASE0 Determines the HO configurational space and dimensions of allocatable arrays.
THOALLOC Allocates memory required for the given run of the code.
BASE Calculates and stores properties of the configurational space and all associated quantum numbers.
GAUPOL Calculates and stores the HO basis wave functions.
INOUT Sets or reads (optional) initial densities, fields, and matrix elements.
ITER Main iteration loop for the HFB+HO calculation, which is repeated until convergence is met. It includes th

following subroutines:

DENSIT Calculates densities in coordinate space.
FIELD Calculates mean fields in coordinate space.
GAMDEL Calculates the particle-hole and pairing Hamiltonian matrices.
EXPECT Calculates average values of observables.
HFBDIAG Diagonalizes the HFB equation.

F01234 After the HFB+HO solution is found, calculates the THO basis wave functions, which replace the HO on
ITER Main iteration loop for the HFB+THO calculation, which is repeated until convergence is met. The same

subroutine and sequence of calls is used as above.
RESU Calculates all required physical characteristics and canonical basis properties, and performs the particl

number projection.
INOUT Records the final densities, fields, and matrix elements for feature use (optional).

Table 2
Input data filetho.dat

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p) (q) (r) (s)

−20 20
20 −2. 0. −1 300 1 70 50 ‘SLY4’ −1 1 0 0.26 0.5 9 0 2 2 0.000
20 −2. 0. −1 300 1 72 50 ‘SLY4’ −1 1 0 0.26 0.5 9 0 2 −2 0.0001
20 −2. 0. −1 300 1 74 50 ‘SLY4’ −1 1 0 0.26 0.5 9 0 −2 2 0.0001
20 −2. 0. −1 300 1 76 50 ‘SLY4’ −1 1 0 0.26 0.5 9 0 −2 −2 0.0001

−14 −2. 0. −1 300 1 78 50 ‘SKP’ −1 1 0 0.26 0.5 9 0 4 4 0.000
0 −2. 0. −1 300 1 70 50 ‘SLY4’ −1 1 0 0.26 0.5 9 0 0 0 0.000

(i) nucleus-after-nucleus, defined by I1< 0,
(ii) file-after-file, defined by I1= 0,

(iii) chain-after-chain, defined by I1> 0.

In thenucleus-after-nucleusmode, the code ignores the values of|I1| and I2, and then performs one run f
each line of the input data file that follows the first line. This is the simplest and most often used mode, illu
by the example given inTable 1.

In the file-after-file mode, the code ignores the value of I2, and then reads the second line of the inp
file, from where it takes all fields except from the values ofININ, N , andZ. Then it performs one run for eac
dnnn_zzz file found in the current directory. Filesdnnn_zzz contain results of previous runs and are descri
below.

In the chain-after-chain mode, the code reads the second line of the input data file, from where it tak
fields except from the values ofN , andZ. Then it performs one run for each nucleus in the chain of isotone
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isotopes located between the bottom of the stability valley and the drip line. The bottom of the stability v
parametrically defined as

(80)f (N,Z) ≡ N − Z − 0.006(N + Z)5/3 = 0.

• If I2 > 0, the code calculates the chain of isotopes for the proton numberZ = I1, starting with the lowest eve
neutron numberN satisfyingf (N,Z) > 0, and then step-by-step increasing the number of neutrons by
Calculations continue until the neutron drip line is reached, and then the program stops.

• If I2 < 0, the code calculates the chain of isotones for the neutron numberN = I1, starting with the lowes
even proton numberZ satisfyingf (N,Z) < 0, and then step-by-step increasing the number of protons by
Calculations continue until the proton drip line is reached, and then the program stops.

All lines of the input data file, after the first line, contain 19 fields each. Below we denote these fields by
(a)–(s), as shown in the header ofTable 2. The description of the fields is as follows:

• (a) Number of oscillator shellsNsh:
– If Nsh> 0, the code prints intermediate results at every iteration.
– If Nsh < 0, the code prints results at the first and last iterations only, and the modulus of the input v

used forNsh.
– If Nsh= 0, the code stops. This value is used to indicate the end of the input data file.
ForNsh> 14, the code always begins with a short, 20-iteration run usingNsh= 14, and the resulting fields the
serve as a starting point for the calculation with the requested value ofNsh. For the THO-basis calculation
use ofNsh < 14 is not recommended, because precision of the HO density profile can be insufficien
reliable determination of the LST function.

• (b) Oscillator basis parameterb0 =
√

b2
z + b2⊥:

– If b0 > 0, the code uses this given value ofb0.

– If b0 < 0, the code uses the default value ofb0 =
√

2(h̄2/2m)/(41f A−1/3) for f = 1.2.

• (c) Deformationβ0 of the HO basis. The value ofβ0 defines the HO oscillator lengths throughb⊥ = b0q
−1/6,

bz = b0q
1/3, andq = exp(3

√
5/(16π)β0). In particular, the value ofβ0 = 0 corresponds to the spherical H

basis.
• (d) The THO basis control parameterILST:

– If ILST = 0, the code performs the HO basis calculation only. IfININ < 0, the filednnn_zzz.hel is
used as the starting point. IfMAXI> 0, at the end of the given run filednnn_zzz.hel is written.

– If ILST = −1, the code performs the HO basis calculation followed by the THO basis calculati
ININ < 0, the filednnn_zzz.hel is used as the starting point. IfMAXI > 0, at the end of the give
run filesdnnn_zzz.hel anddnnn_zzz.tel are written.

– If ILST = 1, the code performs the THO basis calculation only. Filednnn_zzz.tel must exist and
is used as the starting point (onlyININ < 0 is allowed). IfMAXI > 0, at the end of the given run fil
dnnn_zzz.tel is written.

• (e) Maximal number of iterationsMAXI. If the negative number is read, the absolute value is used.
– If MAXI> 0, at the end of the given run filesdnnn_zzz.hel and/ordnnn_zzz.tel are written,
– If MAXI < 0, filesdnnn_zzz.hel anddnnn_zzz.tel are not written, and the modulus of the inp

value is used forMAXI.
• (f) The starting-point control parameterININ:

– If ININ= 1, the code starts from a default spherical field predefined within the code,
– If ININ= 2, the code starts from a default prolate field predefined within the code,
– If ININ= 3, the code starts from a default oblate field predefined within the code,
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Table 3
User-defined parameters of the Skyrme force, as given in the fileforces.dat

Value Description

‘SLY4’ Skyrme-force acronym
0 Tensor term (0—excluded, 1—included)

−0.2488913d+04 t0
0.4868180d+03 t1

−0.5463950d+03 t2
0.1377700d+05 t3
0.8340000d0 x0

−0.3440000d0 x1
−1.0000000d0 x2

1.3540000d0 x3
0.1230000d+03 W0
6.0d0 1/α

20.735530d0 h̄2/2m
0.160d0 ρ0 (saturation density for pairing)
1.0d0 γ (power of density for pairing)

60.0d0 ēmax (pairing cut-off energy)
0.5d0 V1 (0—volume, 1—surface, 0.5—mixed)

−244.7200d0 V0 (pairing strength)

– If ININ= −1, the code starts from filesnnn_zzz.hel or snnn_zzz.tel,
– If ININ= −2, the code starts from filepnnn_zzz.hel or pnnn_zzz.tel,
– If ININ= −3, the code starts from fileonnn_zzz.hel or onnn_zzz.tel.

• (g) Number of neutronsN .
• (h) Number of protonsZ.
• (i) Skyrme force character*4 acronym, e.g., ‘SIII’, ‘SKP’, ‘SLY4’, or ‘SKM*’. If value ‘READ’ is read, th

code reads the Skyrme force parameters from fileforces.dat. An example of the fileforces.dat is
presented inTable 3.

• (j) The Lipkin–Nogami control parameterKINDHFB:
– If KINDHFB= 1, Lipkin–Nogami correction not included,
– If KINDHFB= −1, Lipkin–Nogami correction included.

• (k) The pairing-force control parameterIPPFORCE:
– If IPPFORCE= 0, no pairing correlations (Hartree–Fock calculation),
– If IPPFORCE= 1, calculation for the density-dependent delta pairing force,
– If IPPFORCE= 2, calculation for the density-independent delta pairing force.

• (l) The quadrupole-constraint control parameterICSTR. If ICSTR = 0, the quadrupole constraint is not i
cluded, and the next two fields (m) and (n) are not used. IfICSTR= 1, then:
– (m) Constrained value of the quadrupole deformationβ̄. The value ofβ̄ defines the constrained quadrupo

momentQ̄ in Eq.(78) through:Q̄ =
√

5
π
〈r2〉β̄.

– (n) Parameterη defining the stiffnessCQ of the quadratic quadrupole constraint constant byCQ =
η(41A−1/3)/(8Ab2

0〈r2〉).
• (o) The number of gauge-angle pointsL used for the particle number projection. Note that the code alw

performs the PNP, even if pairing correlations are not included.
• (p) The particle number shift control parameterISHIFT. If, ISHIFT = 0, the particle number projection

performed onN andZ, and the next two fields (q) and (r) are not used. IfISHIFT= 1, then:
– (q) Neutron number shiftKDN, i.e. the projection is performed on neutron numberN + KDN,
– (r) Proton number shiftKDZ, i.e. the projection is performed on proton numberZ + KDZ.
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• (s) Requested precision of convergenceSI (in MeV). Iterations stop when changes of all mean-field and p
ing matrix elements between two consecutive iterations become smaller than the value ofSI. Recommended
value is 0.0001.

After the solution is found, and ifMAXI > 0, the code writes filesdnnn_zzz.hel (if the HO-basis run ha
been performed) and/ordnnn_zzz.tel (if the THO-basis run has been performed). Names of these file
automatically constructed based on the input-data parametersININ, N , andZ, namely:

• d = ‘s’, ‘p’, or ‘o’, for |ININ| = 1, 2, or 3, respectively,
• nnn = three-digit value ofN with leading zeros included,
• zzz = three-digit value ofZ with leading zeros included.

These files can be used in a later run to restart calculations from previously found solutions. For exam
s070_050.tel contains results of the THO-basis calculation for120Sn, which has been obtained by starti
from a spherical field. Note that the name of the file reflects the starting deformation only, while it may, i
contain results for another deformation that has been obtained during the iteration.

4.3. Output files

The results are printed on the standard output file. Each run produces a separate part of the output file
HO run preceding a THO run produces one such part. A test run output is included in the directory./compar
Note that the output data may differ in the final decimal places depending on the compiler used. Below we
describe different sections of the output file.

• Header. Contains the version number of the code, date and time of execution, name of the element
particle, neutron, and proton numbers.

• Input data. Contains a short summary of the input data for the requested run.
• Force. Lists the acronym and parameters of the Skyrme force, as well as parameters of the pairing forc
• Numerical. Contains some information on numerical parameters and options used for the given run.
• Mode. Gives the mode in which the code is run.
• Iterations. Shows brief information about iterations performed. One line of the output file per each itera

printed and contains the following columns:
– Iteration numberi.
– Accuracysi.
– Current mixing parameter between the previous and current fieldsmix.

– Quadrupole deformationbeta, β =
√

π
5

〈Q̂〉
〈r2〉 , for Q̂ given in Eq.(79).

– Total energyEtot.
– Particle numberA.
– Neutron rms radiusrn.
– Proton rms radiusrp.
– Neutron pairing energyEn.
– Neutron pairing gapDn.
– Proton pairing energyEp.
– Proton pairing gapDp.
– Neutron Fermi energyLn.
– Proton Fermi energyLp.
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• Files. Contains information on thednnn_zzz.hel or dnnn_zzz.tel file written.
• Observables. Lists values of various observables calculated for the HFB state without PNP and wi

Lipkin–Nogami corrections, and then those calculated for the PNP HFB state.

The same information, plus more results on the quasiparticle and canonical states, is also written to
thoout.dat. However, this file is rewound after each run, so it contains results of only the last run execu
the given input data file.

Fileshodef.dat andthodef.dat contain synthetic results of all runs, printed in the form of a single
per each performed run. If the given run performs only an HO-basis calculation, or only a THO-basis calc
then only an entry in filehodef.dat or thodef.dat is produced, respectively. On the other hand, runs
perform both HO and THO calculations produce entries in both these files. Lines in the fileshodef.dat and
thodef.dat contain 105 columns each, and each column is described by a name printed in the first hea
The names are self-explanatory, and most often they correspond to the names used in the present write-u
preceded byU: pertain to results obtained for the HFB states before PNP, while those beginning withL pertain to
the results containing the Lipkin–Nogami corrections. Names ending witht, n, orp give total, neutron, or proto
observables, respectively.

5. Conclusions

The code HFBTHO (v1.66p) is a tool of choice for self-consistent calculations for a large number of
even nuclei. Several examples of deformed HFBTHO calculations, recently implemented on parallel com
are given in Ref.[23]. By creating a simple load-balancing routine that allows one to scale the problem t
processors, it was possible to calculate the entire deformed even–even nuclear mass table in a single 24 w
hour run (or approximately 4800 processor hours).

The crucial input for such calculations, which determines the quality of results, is the nuclear energy
functional. The development of the “universal” nuclear energy density functional still remains one of the
challenges for nuclear theory. While self-consistent HFB methods have already achieved a level of sophi
and precision which allows analyses of experimental data for a wide range of properties and for arbitraril
nuclei (see, e.g., Refs.[41–43] for deformed HFB mass table), much work remains to be done. Develop
universal nuclear density functional will require a better understanding of the density dependence, isospin
and pairing, as well as an improved treatment of symmetry-breaking effects and many-body correlations.

In addition to systematic improvements of the nuclear energy density functional, there are several an
extensions of HFBTHO itself. The future enhancements to HFBTHO will include the implementation
full particle-number projectionbefore variation, extension of code to odd particle numbers, implementatio
non-standard spin-orbit term and two-body center-of-mass correction, and evaluation of dynamical cor
representing correlations beyond the mean field.
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