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Particle-number restoration before variation is implemented in the HFB method

employing the Skyrme force and zero-range delta pairing. Results are com-

pared with those obtained within the Lipkin-Nogami method, with or without

the particle-number projection after variation. Shift invariance property is proven

to be valid also in the case of density functional calculations which allows the well
known singularity (u2

n
= v

2
n
) in PNP HFB calculations to be safely avoided.

1. Introduction

Pairing correlations play a central role in describing properties of atomic

nuclei. In mean-field approaches, they are best treated in the Hartree-Fock-

Bogoliubov (HFB) approximation 1. The HFB ansatz for the nuclear wave

function, however, breaks the particle-number symmetry. The symmetry

needs to be restored, in principle, especially if one looks at observables that

strongly vary as functions of particle number.

Recently, it has been shown 2 that the total energy in the particle-
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number-projected (PNP) HFB approach can be expressed as a functional

of the unprojected HFB density matrix and pairing tensor. Its variation

leads to a set of HFB-like equations with modified Hartree-Fock fields and

pairing potentials. The method has been illustrated within schematic mod-

els 2, and also implemented in HFB calculations with the finite-range Gogny

force 3. In the present paper we adopt it for the Skyrme functional and

delta pairing, where the method must rely on the spatial locality of den-

sities and mean fields. The HFB results using the Lipkin-Nogami (LN)

approximation followed by the particle-number projection after variation

(PLN) are compared to the HFB results with projection before variation

(PNP).

2. Particle-Number-Projected Skyrme-HFB Method

2.1. Skyrme-HFB method

Due to the zero-range character of the Skyrme force, the Skyrme-HFB

energy is an energy functional,

E[ρ, ρ̃] =
〈Φ|H|Φ〉
〈Φ|Φ〉 =

∫

dr
[

H(r) + H̃(r)
]

, (1)

of local particle and pairing densities, where H(r) and H̃(r) are normal and

pairing energy densities, respectively. Their explicit expressions 4 are given

in terms of particle (pairing) local densities and currents. All local densities

and currents are completely determined by particle ρn′n and pairing ρ̃n′n

density-matrix elements in the configurational space, i.e.,

ρ(rσ, r′σ′) =
∑

nn′

ρnn′ ψ∗
n′(r′, σ′)ψn(r, σ),

ρ̃(rσ, r′σ′) =
∑

nn′

ρ̃nn′ ψ∗
n′(r′, σ′)ψn(r, σ).

(2)

The use of the pairing density matrix ρ̃(rσ, r′σ′) = −2σ′κ(r,σ, r′, − σ′) in-

stead of the pairing tensor κ is convenient when the time-reversal symmetry

is assumed 4.

The derivatives of the energy (1) with respect to ρnn′ and ρ̃nn′ define
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the particle-hole and particle-particle matrices

hnn′ =
∂E(ρ, ρ̃)

∂ρn′n

=
∑

σσ′

∫

dr ψ∗
n(r, σ)h(r, σ, σ′)ψn′(r, σ′),

h̃nn′ =
∂E(ρ, ρ̃)

∂ρ̃n′n

=
∑

σσ′

∫

dr ψ∗
n′(r, σ)h̃(r, σ, σ′)ψn(r, σ′),

(3)

respectively, which enter the Skyrme-HFB equations
(

h − λ h̃

h̃ −h + λ

)(
U

V

)

= E

(
U

V

)

. (4)

2.2. Particle-number-projection

Let us consider, in the context of HFB theory, the PNP state:

|Ψ〉 ≡ PN |Φ〉 =
1

2π

∫ 2π

0

dφ eıφ(N̂−N)|Φ〉, (5)

where N̂ is the number operator, N is the particle number, and |Φ〉 is the

HFB wavefunction which does not have a well-defined particle number. As

shown in Ref. 2, the PNP HFB energy

E
N [ρ, ρ̄] =

〈
Φ|HPN |Φ

〉

〈Φ|PN |Φ〉 =

∫
dφ〈Φ|Heiφ(N̂−N)|Φ〉

∫
dφ〈Φ|eiφ(N̂−N)|Φ〉

, (6)

is again an energy functional of the unprojected densities ρ and ρ̄.

The situation, however, is not so simple in the case when the energy is

deduced from an energy density functional. The source of the problem lies

in the fact that the unprojected energy (1) is defined only in connection

with one mean field state, i.e., one identifies formally E[ρ, ρ̄] ⇐⇒ 〈Φ|Ĥ|Φ〉
where ρ(rσ, r′σ′) and ρ̄(rσ, r′σ′) are densities associated with |Φ〉.

The question is how to use the energy-density functionals in projection

techniques which require the knowledge of off-diagonal (or “transitional”)

expectation values:

〈Φ(0)|Ĥ |Φ(φ)〉, |Φ(φ)〉 = eıφ(N̂−N)|Φ〉. (7)

These are not automatically given by DFT. Extensions of the formalism are

necessary and they are not unique. Various recipes are discussed in Ref. 3.

Let us consider in particular the “mixed density” recipe that treats

all local densities as “mixed” (or “transitional”) ones defined between the
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states Φ(0) and Φ(φ). In the case of the Skyrme force, the projected energy

(6) reads:

E
N [ρ, ρ̃] =

〈
Φ|HPN |Φ

〉

〈Φ|PN |Φ〉 =

∫

dφ y(φ)

∫

dr
(

H(r, φ) + H̃(r, φ)
)

, (8)

where

x(φ) = 1
2π

e−iφN det(eiφI)√
det C(φ)

, y(φ) = x(φ)
R

dφ′ x(φ′)
, (9)

I is the unit matrix, and the gauge-angle dependent energy densities H(r, φ)

and H̃(r, φ) are derived from the unprojected ones by simply replacing par-

ticle (pairing) local densities by their gauge-angle dependent counterparts.

The latter ones are defined by the gauge-angle dependent “mixed” density

matrices

ρ(rσ, r′σ′, φ) =
∑

nn′

ρnn′(φ) ψ∗
n′(r′, σ′)ψn(r, σ),

ρ̃(rσ, r′σ′, φ) =
∑

nn′

ρ̃nn′(φ) ψ∗
n′(r′, σ′)ψn(r, σ),

(10)

where

ρn′n(φ) =
〈Φ|c†ncn′eiφN̂ |Φ〉

〈Φ|eiφN̂ |Φ〉
=

∑

m

Cnm(φ)ρmn′ ,

ρ̃n′n(φ) = e−iφ
∑

m

Cnm(φ)ρ̃mn′ ,

C(φ) = e2iφ
(
1 + ρ(e2iφ − 1)

)−1
.

(11)

Obviously, the projected energy (8) is again a functional of the unpro-

jected density matrices ρ and ρ̃. Its derivatives with respect to ρn′n and

ρ̃n′n lead to the PNP Skyrme-HFB equations

(
hN h̃N

h̃N −hN

)(
U

V

)

= EN

(
U

V

)

, (12)
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where

hN =
∫

dφy(φ)Y (φ)E(φ) +
∫

dφy(φ)e−2iφ C(φ)h(φ)C(φ)

− 1
2 [

∫
dφy(φ)2ie−iφsin(φ)ρ̃(φ)h̃(φ)C(φ) + h.c.] ,

h̃N = 1
2

∫
dφy(φ)e−iφ{h̃(φ)C(φ) + (h̃(φ)C(φ))T }

Y (φ) = ie−iφ sin φ C(φ) − i
∫

dφ′y(φ′)e−iφ′

sin φ′ C(φ′).

(13)

The gauge-angle dependent field matrices h(φ) and h̃(φ) are obtained by

simply replacing in the unprojected fields (3) the particle and pairing local

densities with their gauge-angle dependent counterparts.
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Figure 1. The LN and PLN (projection after variation), and PNP HFB (projection
before variation) results obtained for the SLy4 force and mixed delta pairing. Arrows in

the top panel indicate projection results from the neighboring nuclei.



July 5, 2005 12:10 Proceedings Trim Size: 9in x 6in MarioPaestum

6

2.3. Delta pairing forces

When using delta pairing forces, one has to restrict the quasiparticle space

in order to avoid the divergences associated with the zero range. Within

the unprojected HFB calculations, a pairing cut-off is introduced by using

the so-called equivalent single-particle spectrum 4,5. After each iteration

performed with a given chemical potential λ, one calculates an equivalent

spectrum ēn and pairing gaps ∆̄n:

ēn = (1 − 2Pn)En + λ, ∆̄n = 2En

√

Pn(1 − Pn), (14)

where En are the quasiparticle energies and Pn denotes the norms of the

lower HFB wave function. Due to the similarity between ēn and the single-

particle energies, one can take into account only those quasiparticle states

for which ēn is less than the cut-off energy εcut (usually around 60 MeV).

One can see that this procedure cannot be directly applied to the PNP

HFB calculations, because the Lagrange multiplier λ entering the unpro-

jected HFB Eqs. (4) is no longer available in Eq. (12). This means that

the local densities emerging after each HFB diagonalization (12) are not

automatically normalized to the particle number N . As a result, all aux-

iliary quantities, as e.g. the analogues of the quasiparticle energies, EN
n ,

and probabilities, PN
n , do not have the usual meaning. However, one can

always reintroduce the Lagrange multiplier λ into Eq. (12) without chang-

ing the results, and adjust it to give a correct average particle number in

the unprojected state. In practice, it is enough to calculate for the solu-

tions of Eq. (12) the average values En of the unprojected HFB matrix and

use them in Eq. (14) together with Pn≡PN
n . This allows for defining the

Lagrange multiplier and implementing the cut-off procedure.

2.4. Sample PNP HFB results

Figure 1 gives the PNP HFB results for the complete chain of the calcium

isotopes (proton-neutron drip to drip line), calculated for the Sly4 force 6

and mixed delta pairing 5. Comparison is also made with the HFB Lipkin-

Nogami (LN) results and projected (after variation) Lipkin-Nogami results

(PLN). One can conclude that the PLN approximation works good for open-

shell nuclei, where the total energy differences between various variants of

calculations are less than 250 keV. For closed-shell nuclei 7, however, the

energy differences increase to more than 1 MeV. In such cases, one can

improve the PLN results by applying the projection to the LN solutions

obtained for the neighboring nuclei 8, as illustrated in the top panel of
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Fig. 1.

3. Shift Invariance Within DFT

Important consequences for the PNP HFB expectation values follow from

the obvious shift invariance property 9

eψ(N̂−N)
︸ ︷︷ ︸

Ŝψ

|Ψ〉 = |Ψ〉 (15)

of the PNP wave function (5), where ψ is an arbitrary number. For example,

the energy (6) is obviously shift–invariant under the transformation Ŝψ since

EN =
〈Φ|Ĥ|Ψ〉
〈Φ|Ψ〉 =

〈Φ|ĤŜψ|Ψ〉
〈Φ|Ŝψ|Ψ〉

. (16)

Again, the situation becomes more complicated when the energy is de-

duced from an energy density functional.

3.1. The shift invariance under the “mixed density” recipe

In order to prove the shift invariance under the “mixed density” recipe, let

us introduce the “mixed local densities” in their canonical representation

ρφ(r) =
∑

n

v∗
nvn e2ıφ

u∗
nun + v∗

nvn e2ıφ
ϕ†

n(r)ϕn(r),

κφ(r) =
∑

n

u∗
nvn e2ıφ

u∗
nun + v∗

nvn e2ıφ
ϕ†

n(r)ϕn(r),

κ̄φ(r) =
∑

n

unv∗
n

u∗
nun + v∗

nvn e2ıφ
ϕ†

n(r)ϕn(r).

(17)

The energy (8) can be rewritten as

EN =

∫
dφ e−ıφN

I(φ) E (κφ, κ̄φ, ρφ)
∫

dφ e−ıφN I(φ)
, I(φ) = 〈Φ(0)|Φ(φ)〉. (18)

As a rule of thumb, we note that the phase factor e2ıφ is always linked to

vn, considering v∗
n as an independent variable.

In order to check whether the definition (17)-(18) does also guarantees

the shift invariance (16), one needs to show that EN = E(shift) where

E(shift) =

∫
dφ e−ıφN−ψN

I(φ, ψ) E (κφψ, κ̄φψ, ρφψ)
∫

dφ e−ıφN−ψN I(φ, ψ)
, (19)
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I(φ, ψ) = 〈Φ(0)|e−ψN |Φ(φ)〉 (20)

and

ρφψ(r) =
∑

n

v∗
nvn e2ıφ+2ψ

u∗
nun + v∗

nvn e2ıφ+2ψ
ϕ†

n(r)ϕn(r),

κφψ(r) =
∑

n

u∗
nvn e2ıφ+2ψ

u∗
nun + v∗

nvn e2ıφ+2ψ
ϕ†

n(r)ϕn(r),

κ̄φψ(r) =
∑

n

unv∗
n

u∗
nun + v∗

nvn e2ıφ+2ψ
ϕ†

n(r)ϕn(r).

(21)

The shift invariance is trivially maintained for the kinetic energy because

this quantity is given by expectation value of an operator such that a rea-

soning as in Eq. (16) applies. To prove the invariance for other terms,

we start from the observation that the shift is tightly linked to the r.h.s.

occupation amplitude, i.e.

vn ←→ vne2ıφ+2ψ. (22)

Now we make the strong assumption that the energy expectation value can

be expanded into a mixed power series with respect to vn, v∗
n, un, and u∗

n.

We collect terms having the same number of vn. The numerator in the

energy expression will then contain a kernel as

E(num) =

∫

dφ e−ıφN−ψN
∑

Nv

vn1
..vnNv

︸ ︷︷ ︸

Nv terms

eıφNv+ψNv

∑

anything

v∗
m..uk..u∗

l ...

(23)

The φ integration filters the term N = Nv, yielding
∫

dφ e−ıφNeıφNv =⇒ N = Nv =⇒ e−ψNeψNv = 1.

The same reasoning applies to the denominator. Thus both the numerator

and the denominator in the projected energy expression are separately shift-

invariant. This holds for DFT with the extension recipe (17).

The above demonstration relies on a power series expansion in order

vN . But such an expansion will not converge just around the critical point

un = vn. However, as we discuss later, one can always avoid the case

containing the critical point un = vn, and one indeed does not need such a

proof expansion.



July 5, 2005 12:10 Proceedings Trim Size: 9in x 6in MarioPaestum

9

3.2. Other extensions of DFT

There are alternatives to the recipe((17)-(18)) suggested in Ref. 10. For

example, one may use the projected densities as, e.g., ρN (r) in the DFT

energy expectation value. This reads, e.g., for the potential energy

EN
pot = Epot

[
ρN

]
. (24)

With the same reasoning as above, one can show that ρN (r) is shift in-

variant. The recipe (24) is then also shift-invariant. There are, however,

objections for other reasons. For example, this recipe can be shown to be

wrong in the simple case of a two-body point coupling force.

There is a proposal from 10 to extend the DFT definition just by adding

two densities ρφ(r) and ρ0(r) associated with Φ(0) and Φ(φ), respectively.

The recipe consists in using an average value

Epot (ρ) −→ 1

2

(
Epot [ρ0] + Epot

[
ρφ

])
(25)

in the projection kernel. But note that ρφ(r) = ρ0(r) = ρ(r) for that

particular case of particle number projection. The phase factors e2ıφ just

cancel out if used on bra and ket simultaneously. One then obtain

1

2

(
Epot [ρ0] + Epot

[
ρφ

])
= Epot [ρ] , (26)

i.e., one obtains the unprojected energy.

3.3. The innocent singularity in DFT applications

At first glance, the mixed density recipe (17)-(18) also has a problem. Look-

ing at the denominator of the spatial densities (17), one notices a possible

singularity at u2
n = v2

n = 1/2 for a gauge-angle φ → π/2. The shift invari-

ance allows to show that this singularity is unimportant.

We assume that we have a discrete spectrum with a finite set of vn and

un. Now let it happen that u2
n = v2

n. We apply a shift vn −→ vne2ψ which

guarantees that u2
n 6= v2

n. In a discrete spectrum, one can always find a

ψ such that all other amplitudes um and vm stay different. We then can

evaluate the projected energy without having dealt with singularity.

In numerical applications one can easily implement the shift vn −→
vne2ψ by changing the normalization of the internal density

∫

ρ̄(r)dr = N̄ , ρ̄(r) =
∑

n

v2
nϕ†

n(r)ϕn(r). (27)
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Different values of ψ correspond to different values of the normalization

constant N̄ . Therefore, instead of ψ, one can keep the internal normal-

ization constant N̄ fixed during the PNP HFB iterations. This could be

achieved by introducing a Lagrange multiplier µ by means of Eq. (27), and

µ always goes to zero when the PNP HFB solution is achieved.

Indeed, all the numerical tests we have performed have shown that the

PNP HFB results do not depend on the particular values of N̄ , and perfect

shift invariance is always achieved. Changing the intrinsic normalization N̄

in a wide range, occupation probability v2, which is closer to the critical

value 1/2, varies from 0.076 to 0.945, but all nuclear characteristics remain

unchanged.
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