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An improved prescription for choosing a transformed harmonic-oscillator(THO) basis for use in
configuration-space Hartree-Fock-Bogoliubov(HFB) calculations is presented. The new HFB+THO frame-
work that follows accurately reproduces the results of coordinate-space HFB calculations for spherical nuclei,
including those that are weakly bound. Furthermore, it is fully automated, facilitating its use in systematic
investigations of large sets of nuclei throughout the periodic table. As a first application, we have carried out
calculations using the Skyrme force SLy4 and volume pairing, with exact particle-number projection following
application of the Lipkin-Nogami prescription. Calculations were performed for all even-even nuclei from the
proton drip line to the neutron drip line having proton numbersZ=2, 4, . . ., 108 and neutron numbersN
=2, 4, . . ., 188. We focus on nuclei near the neutron drip line and find that there exist numerous particle-bound
even-even nuclei(i.e., nuclei with negative Fermi energies) that have at the same time negative two-neutron
separation energies. This phenomenon, which was earlier noted for light nuclei, is attributed to bound shape
isomers beyond the drip line.
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I. INTRODUCTION

The development of experimental facilities that accelerate
radioactive ion beams[1,2] has opened up a window to many
nuclei that were heretofore inaccessible. With these new fa-
cilities and the new detector technology that is accompany-
ing them, it is becoming possible to study the properties of
nuclei very far from the valley ofb stability, all the way out
to the particle “drip lines” and perhaps even beyond.

Much work is now in progress to develop appropriate
theoretical tools for describing nuclei in these exotic regimes
[3]. A proper theoretical description of such weakly bound
systems requires a careful treatment of the asymptotic part of
the nucleonic density. An appropriate framework for these
calculations is Hartree-Fock-Bogoliubov(HFB) theory,
solved in coordinate representation[4–6]. This method has
been used extensively in the treatment of spherical systems
but is much more difficult to implement for systems with
deformed equilibrium shapes[7–9].

In the absence of reliable coordinate-space solutions to
the deformed HFB equations, it is useful to consider instead
the configuration-space approach, whereby the HFB solution
is expanded in a single-particle basis. One approach has been
to use a truncated basis composed partly of discrete localized
states and partly of discretized continuum and oscillating
states[7,8,10]. Because of the technical difficulties in imple-
menting this method, it has typically been restricted to in-
clude states in the continuum up to at most several MeV. As
a consequence, such an approach should not be able to de-
scribe adequately the spatial properties of nuclear densities at
large distances.

An alternative possibility is to expand in a basis of spa-
tially localized states. Expansion in a harmonic-oscillator

(HO) basis is particularly attractive because of the simple
properties of oscillator states. There have been many
configuration-space HFB+HO calculations reported, either
employing Skyrme forces or the Gogny effective interaction
[11–14], or using a relativistic Lagrangian[15,16]. This
methodology has proven particularly useful when treating
nuclei in or near the valley of stability. For nuclei at the drip
lines, however, the HFB+HO expansion converges slowly as
a function of the number of oscillator shells[6], producing
wave functions that decrease too steeply at large distances.
The resulting densities, especially in the pairing channel, are
artificially reduced in the outer region and do not reflect cor-
rectly the pairing correlations of these weakly bound nuclei.

A related approach that has recently been proposed is to
instead expand the quasiparticle HFB wave functions in a
complete set of transformed harmonic-oscillator(THO) basis
states[17–19], obtained by applying a local-scaling coordi-
nate transformation(LST) [20–22] to the standard HO basis.
The THO basis preserves many useful properties of the HO
wave functions, including its simplicity in numerical algo-
rithms, while at the same time permitting us to incorporate
the appropriate asymptotic behavior of nuclear densities.

Applications of this new HFB+THO methodology have
been reported both in the non-relativistic[18,19] and relativ-
istic domains[17]. In all of these calculations, specific global
parametrizations were employed for the scalar LST function
that defines the THO basis. There are several limitations in
such an approach, however. On the one hand, any global
parametrization of the LST function will of necessity modify
properties throughout the entire nuclear volume, in order to
improve the asymptotic density at large distances. This is not
desirable, however, since the HFB+HO results are usually
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reliable in the nuclear interior, even for weakly bound sys-
tems. In addition, because of the need to introduce matching
conditions between the interior and exterior regions, a global
LST function will invariably have a very complicated behav-
ior, especially around the classical turning point, making it
difficult to simply parametrize. Perhaps most importantly, the
minimization procedure that is needed in such an approach to
optimally define the basis parameters is computationally very
time consuming, especially when a large number of shells is
included, making it very difficult to apply the method sys-
tematically to nuclei across the periodic table.

In the present work, we propose a new prescription for
choosing the THO basis. For a given nucleus, our new pre-
scription requires as input the results from a relatively simple
HFB+HO calculation, with no variational optimization. The
resulting THO basis leads to HFB+THO results that almost
exactly reproduce the coordinate-space HFB results for
spherical[5] and axially deformed[10] nuclei and are of
comparable quality to those of the former, more complex,
HFB+THO methodology.

Because the new prescription requires no variational op-
timization of the LST function, it can be readily applied in
systematic studies of nuclear properties. As the first such
application, we carry out a detailed study of nuclei between
the two-particle drip lines throughout the periodic table, us-
ing the Skyrme force SLy4[23] and volume pairing[19]. In
order to restore good particle number, we apply the Lipkin-
Nogami (LN) prescription [24–29] followed by exact
particle-number projection(PNP) [30].

The structure of the paper is the following. In Sec. II, we
briefly review the HFB and LN methods, noting several fea-
tures particular to its coordinate and configurational repre-
sentation. In Sec. III, we introduce the THO basis and then
formulate our new prescription for the LST function. The
results of systematic calculations of even-even nuclei are re-
ported in Sec. IV, with special emphasis on those nuclei that
are at the neutron drip line and just beyond. Conclusions and
thoughts for the future are presented in Sec. V.

II. OVERVIEW OF HARTREE-FOCK-BOGOLIUBOV
THEORY AND THE LIPKIN-NOGAMI METHOD

In this section, we review the basic ingredients of Hartree-
Fock-Bogoliubov theory and the Lipkin-Nogami method fol-
lowed by particle-number projection. Since these are by now
standard tools in nuclear structure, we keep the presentation
brief and refer the reader to Ref.[30] for further details.

HFB is a variational theory that treats in a unified fashion
mean-field and pairing correlations. The HFB equations can
be written in matrix form as

Sh − l D

− D* − h* + l
DSUn

Vn
D = EnSUn

Vn
D , s2.1d

whereEn are the quasiparticle energies,l is the chemical
potential,h= t+G andD are the Hartree-FocksHFd Hamil-
tonian and the pairing potential, respectively, andUn and
Vn are the upper and lower components of the quasiparti-
cle wave functions. These equations are solved subject to
constraints on the average numbers of neutrons and pro-

tons in the system, which determine the two correspond-
ing chemical potentialsln and lp.

In coordinate representation, the HFB approach consists
of solving Eq.(2.1) as a set of integrodifferential equations
with respect to the amplitudesUsEn, r d andVsEn, r d, both of
which are functions of the position coordinater . The result-
ing density matrix and pairing tensor then read

rsr , r 8d = o
0øEnøEmax

V*sEn, r dVsEn, r 8d, s2.2ad

ksr , r 8d = o
0øEnøEmax

V*sEn, r dUsEn, r 8d. s2.2bd

Typically, the HFB continuum is discretized in this approach
by putting the system in a large box with appropriate bound-
ary conditions[6].

In the configurational approach, the HFB equations are
solved by matrix diagonalization within a chosen single-
particle basishcaj with appropriate symmetry properties. In
this sense, the amplitudesUn andVn entering Eq.(2.1) may
be thought of as expansion coefficients for the quasiparticle
states in the assumed basis. The nuclear characteristics of
interest are determined from the density matrix and pairing
tensor,

rsr , r 8d = o
ab

rabcasr dcb
* sr 8d, s2.3ad

ksr , r 8d = o
ab

kabcasr dcbsr 8d, s2.3bd

which are expressed in terms of the basis statesca and the
associated basis matrix elements as

rab = o
0øEnøEmax

Van
* sEndVbnsEnd, s2.4ad

kab = o
0øEnøEmax

Van
* sEndUbnsEnd. s2.4bd

In configuration-space calculations, all quasiparticle states
have discrete energiesEn.

The results from configuration-space HFB calculations
should be identical to those from the coordinate-space ap-
proach when all the statesca from a complete single-particle
basis are taken into account. Of course, this is never possible.
In the presence of truncation, it is essential that the basis
produce rapid convergence, so that reliable results can be
obtained within computational limitations on the number of
basis states that can be included.

The LN method serves as an efficient method for restor-
ing particle number before variation[24]. With only a slight
modification of the HFB procedure outlined above, it is pos-
sible to obtain a very good approximation for the optimal
HFB state, on which exact particle-number projection then
has to be performed[28,31].

In more detail, the LN method is implemented by per-
forming the HFB calculations with an additional term in-
cluded in the HF Hamiltonian,
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h8 = h − 2l2s1 − 2rd, s2.5d

and by iteratively calculating the constantl2 sseparately
for neutrons and protonsd so as to properly describe the
curvature of the total energy as a function of particle num-

ber. For an arbitrary two-body interactionV̂, l2 can be
calculated from the particle-number dispersion according
to f24g,

l2 =
k0uV̂u4lk4uN̂2u0l

k0uN̂2u4lk4uN̂2u0l
, s2.6d

where u0l is the quasiparticle vacuum,N̂ is the particle-
number operator, andu4lk4u is the projection operator onto
the four-quasiparticle space. On evaluating all required
matrix elements, one obtainsf27g

l2 =
4TrG8rs1 − rd + 4TrD8s1 − rdk
8fTrrs1 − rdg2 − 16Trr2s1 − rd2 , s2.7d

where the potentials

Gmm8
8 = o

nn8

Vmnm8n8„rs1 − rd…n8n, s2.8ad

Dmn8 =
1

2 o
m8n8

Vmnm8n8srkdm8n8 s2.8bd

can be calculated in full analogy toG andD by replacingr
andk in terms of which they are defined byrs1−rd andrk,
respectively. In the case of the seniority-pairing interaction
with strengthG, Eq. (2.7) simplifies to

l2 =
G

4

Trs1 − rdk Trrk − 2 Trs1 − rd2r2

fTrrs1 − rdg2 − 2 Trr2s1 − rd2 . s2.9d

An explicit calculation ofl2 from Eq. (2.7) requires cal-
culating new sets of fields, Eq.(2.8), which is rather cum-
bersome. However, we have found[32] that Eq.(2.7) can be
well approximated by the seniority-pairing expression, Eq.
(2.9), with the effective strength

G = Geff = −
D2

Epair
s2.10d

determined from the pairing energy

Epair = − 1
2TrDk s2.11d

and the average pairing gap

D =
TrDr

Trr
. s2.12d

The use of the LN method in HFB theory requires special
consideration of the asymptotic properties of quasiparticle
states[4,5], which are of essential importance for weakly
bound systems. Because of the modified HF Hamiltonian
(2.5), new terms appear in the HFB+LN equation, which are
non local in coordinate representation and thus can modify

the asymptotic conditions. Effectively, this means that the
standard Fermi energyl has to be replaced by

l8 = l + 2l2s1 − 2nmind s2.13d

or by

l9 = l + 2l2, s2.14d

where nmin is the norm of the lower HFB component
VsEmin, rd corresponding to the smallest quasiparticle en-
ergy Emin.

The first expression(2.13) assumes that the asymptotic
properties can be inferred from the HFB equation in the ca-
nonical basis, in whichr is diagonal and has eigenvalues that
can be estimated by norms of the second HFB components.
The second expression(2.14) pertains to the HFB equation
in coordinate representation, in which the integral kernel
rsr, r8d vanishes at large distances. Neither of these expres-
sions can be rigorously justified, thereby demonstrating limi-
tations of using the LN method to analyze spatial properties
of wave functions. These ambiguities are enhanced by the
fact that the LN method overestimates the curvaturel2 near
magic numbers[28,31].

Note that in the exact projection before variation method,
the Fermi energy is entirely irrelevant, and hence one should
not attribute too much importance to the choice betweenl8
andl9. Nevertheless, since the PNP affects only occupation
numbers, leaving the canonical wave functions unchanged,
in what follows we use the modified Fermi energyl8 in
modeling the asymptotic behavior needed to implement the
THO method.

Finally, we should note that the HFB machinery detailed
above can be readily implemented with a quadrupole con-
straint [30], as is the case for some of the calculations we
will be reporting.

III. THE TRANSFORMED HARMONIC-OSCILLATOR
BASIS

In the present study, we carry out HFB calculations in
configuration space, expanding in a transformed harmonic-
oscillator basis. This basis was originally introduced in Refs.
[17–19], and we refer the reader to Ref.[19] for details con-
cerning the use of the deformed THO basis and for a discus-
sion of the cutoff procedure that is used to perform the sum-
mations in Eq. (2.4). We also refer the reader to an
interesting new application of the THO basis to one-
dimensional problems of interest in molecular physics[33].

As noted earlier, all previous calculations using the THO
basis in HFB calculations employed a global parametrization
of the LST function that defined the basis. In the following
sections, we develop a new and improved form for the trans-
formation, which we then use in the HFB+THO applications
to be reported in Sec. V.

A. Comparison of coordinate-space HFB calculations and
configuration-space HFB1HO calculations

The main differences between the results of coordinate-
space HFB calculations and those from configuration-space
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HFB+HO calculations can be seen in plots of the corre-
sponding local density distributions. A typical example is
shown in Fig. 1, where the densities and their logarithmic
derivatives from coordinate-space HFB calculations(solid
lines) are compared with those from a configurational HFB
+HO calculation. Although the calculations were done for a
specific spherical nucleus and Skyrme interaction, the fea-
tures exhibited are generic. Note that the coordinate-space
HFB calculations were carried out in a box of 30 fm, so that
the logarithmic derivative of the density obtained in that cal-
culation shows a sudden drop near the box edge.

Invariably, the logarithmic derivativer8/r associated with
the coordinate-space HFB solution shows a well-defined
minimum near some pointRmin in the asymptotic region,
after which it smoothly approaches a constant value −k,
where

k = 2k = 2Î2msEmin − l8d/"2 s3.1d

is associated with the HFB asymptotic behavior for the
lowest quasiparticle state that has the corresponding qua-
siparticle energyEmin (see Eq.s2.13d and Ref.f6g). This
property is clearly seen in the upper panel of Fig. 1. One can
also see that the HFB+HO densities and logarithmic deriva-
tives are in almost perfect agreement with the coordinate-
space results up tosor aroundd the distanceRmin. We con-
clude, therefore, that the HFB+HO densities are numerically
reliable up to that point.

Moreover, the HFB value of the density decay constant
k=2k, when calculated from Eq.(3.1), is also correctly re-
produced by the HFB+HO results. It is not possible to dis-
tinguish between the values ofk that emerge from the

coordinate-space and harmonic-oscillator HFB calculations,
both values being shown by the same line in the upper panel
of Fig. 1.

Soon beyond the pointRmin, the HFB+HO density begins
to deviate dramatically from that obtained in the coordinate-
space calculation. For relatively small numbers of harmonic-
oscillator shellsNsh, the logarithmic derivative of the HFB
+HO density goes asymptotically to zero following the
Gaussian behavior of the harmonic-oscillator basis. The re-
sulting HFB+HO density does not develop a minimum
around the pointRmin, as seen from theNsh=8 curve shown
in the upper panel of Fig. 1. When the number of harmonic-
oscillator shellsNsh increases, the HFB+HO solution tries to
capture the correct density asymptotics. Due to the Gaussian
asymptotic of the basis, however, the logarithmic derivative
of the HFB+HO density only develops oscillations around
the exact solution(see theNsh=12 and 20 curves in the upper
panel of Fig. 1). As a result, the logarithmic derivative of the
HFB+HO density is very close to the coordinate-space result
around the midpointRm=sRmax−Rmind/2, whereRmax is the
position of the first maximum of the logarithmic derivative
after Rmin.

In summary, the following HFB+HO quantities agree
with the coordinate-space HFB results:(i) the value of the
density decay constantk; (ii ) the local density up to the point
Rmin where the logarithmic derivativer8/r shows a clearly
defined minimum;(iii ) the actual value of this pointRmin;
(iv) the value of the logarithmic derivative of the density at
the pointRm defined above. In fact, the last of the above is
not established nearly as firmly as the first three; neverthe-
less, we shall make use of it in developing our new formu-
lation of the HFB+THO method.

Beyond the pointRm, the HFB+HO solution fails to cap-
ture the physics of the coordinate-space results, especially in
the far asymptotic region. It is this incorrect large-r behavior
that we now try to cure by introducing the THO basis.

B. Approximation to the coordinate-space HFB local densities

Our goal is to try to find an approximation to theexact
(coordinate-space) HFB density that is based only on infor-
mation contained in the HFB+HO results. Towards that end,
we make use of the WKB asymptotic solution of the single-
particle Schrödinger equation for a given potentialVsrd, as-
suming that beyond the classical turning point only the state
with the lowest decay constantk=2k contributes to the local
density. Under this assumption, the logarithmic derivative of
the density can be written as

Ur8srd
rsrd Ur→`

= −
2

r
− 2Îk2 + V −

1

2

V8

k2 + V , s3.2d

where the first term comes from the three-dimensional
volume element, while the next two correspond to the
first- and second-order WKB solutionsf34g. The reduced
potentialV,

FIG. 1. Logarithmic derivative of the density(upper panel) and
the density in logarithmic scale(lower panel), as functions of the
radial distance. The coordinate-space HFB results(solid line) are
compared with those for the HFB+HO method(denoted byr) with
Nsh=8, 12, and 20 HO shells, as well with the approximation(de-
noted byr̃) given by Eq.(3.7) (small circles).
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Vsrd =
2m

"2 Vsrd = VN +
,s, + 1d

r2 +
2m

"2

Ze2

r
s3.3d

is the sum of the nuclear, centrifugal, and Coulombsfor
protonsd contributions, with, being the single-particle or-
bital angular momentum.

In practical applications, it turns out that nearRm the next-
to-lowest quasiparticle states still contribute to the local den-
sity r in a way that may be more important than the second-
order WKB term shown in Eq.(3.2). Moreover, in deformed
nuclei the quasiparticle states do not have good total angular
momentum,, so that several quasiparticles may contribute to
the asymptotic density depending on their, content and the
value ofk. Therefore, we need a practical prescription to fix
a reasonable approximate asymptotic form of the density
with minimal numerical effort but high reliability. This can
be achieved by using in Eq.(3.2) a reduced potential of the
form

Vsrd =
C

r2 +
2m

"2

Ze2

r
, s3.4d

where the nuclear partVN swhich is small around and
beyondRmd is neglected, and the coefficientC is allowed
to differ from its centrifugal barrier value,s,+1d. The
actual value ofC is fixed by the requirement that the
logarithmic derivatives3.2d coincides at the midpointRm
with the ,=0 component of the HFB+HO density, i.e.,
with

rsrd =E
0

p/2

rsr, udP,=0„cossud…sinsuddu. s3.5d

Next, in order to make a smooth transition from the
HFB+HO densityrsrd in the inner region to the approximate
asymptotic expression(3.2) in the outer region, we introduce
the following approximationr̃ for the logarithmic density
derivative:

r̃8srd
r̃srd

=5
r8srd
rsrd

for r ø Rmin

a
sRmin − rd2

rs + b for Rmin ø r ø Rmax

−
2

r
− 2Îk2 + V −

1

2

V8

k2 + V for r ù Rmax.

s3.6d

The coefficientsa andb, and the powers, are determined
from the condition that the logarithmic derivatives3.6d
and its first derivative are smooth functions at the point
Rmin andRmax. Note that the first derivative of Eq.s3.6d at
Rmin is automatically equal to zero, so that there is no need
to introduce a fourth parameter to satisfy this condition.

Having determined the smooth expression for the loga-
rithmic derivative of r̃srd, we can derive the approximate
local density distributionr̃srd by simply integrating Eq.(3.6).
The result is

r̃srd =5
rsrd for r ø Rmin

Ae−brexpF−
a

rsS ar3

3 − s
−

2r2Rmin

2 − s
+

rRmin
2

1 − s
DG

for Rmin ø r ø Rmax

B

expf− 2Er

Îk2 + Vdrg

r2Îk2 + V for r ù Rmax,

s3.7d

where the integration constantsA and B are determined
from the matching conditions for the density at pointsRmin
and Rmax, respectively. Finally,r̃srd is normalized to the
appropriate particle number.

The approximate density(3.7) works fairly well for all
nuclei that we have considered. This is illustrated in Fig. 1
where the approximate densityr̃ (circles) is seen to be in
perfect agreement with the coordinate-space HFB results.

It should be stressed that the above procedure is appli-
cable only when the number of shells is large enough that the
HFB+HO density has a minimum at the pointRmin. The
minimum value ofNsh required to satisfy this condition de-
pends on the particular deformations or on the nuclei consid-
ered. For the number of shellsNsh=20 used in our calcula-
tions, the above condition is always satisfied.

C. LST function for HFB 1THO calculations

The starting point of our new and improved HFB+THO
procedure is, thus, to carry out a standard HFB+HO calcu-
lation for the nucleus of interest, thereby generating its local
density and its local,=0 densityrsrd (3.5), and then to use
the method outlined in the preceding section to correct that
density at large distances[see Eq.(3.7)] by calculatingr̃srd.
The next step is to define the LST[19] so that it transforms
the HFB+HO,=0 density(3.5) into the corrected density of
Eq. (3.7). This requirement leads to the following first-order
differential equation:

r̃srd =
f2sRd
R2

] fsRd
] R rS r

R fsRdD , s3.8d

which for the initial condition fs0d=0 can always be
solved for fsRd.

Once the LST function has been so obtained, we need
simply diagonalize the HFB matrices in the corresponding
THO basis. Most importantly, no information is required to
build the THO basis beyond the results of a standard HFB
+HO calculation. Since no further parameters enter, there is
no need to minimize the HFB+THO total energy. As a con-
sequence, with this new methodology we are able to system-
atically treat large sets of nuclei within a single calculation.

Despite the fact that the new HFB+THO method is sim-
pler to implement than the earlier version, there are no dis-
cernible differences between the results obtained with the
two distinct treatments of the LST function. Most impor-
tantly, the current formulation leads to the same excellent
reproduction of coordinate-space results as did the previous
one [18,19].
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IV. RESULTS

In this section, we present the results of calculations per-
formed for all particle-bound even-even nuclei withZø108
andNø188. The THO basis was implemented according to
the prescription developed in the preceding section. Thek
value used in the procedure was obtained in the following
way. From the starting HFB+HO calculation, we determined
k values separately for neutrons and protons, using Eq.(3.1).
We then associated thek value for the transformation with
the smaller ofkp andkn. In this way, the THO basis is always
adapted to the less-bound type of particle. The calculations
were performed by building THO basis states from spherical
HO bases withNsh=20 HO shells and with oscillator fre-
quencies of"v0=1.2341 MeV/A1/3.

In order to meaningfully test predictions of nuclear
masses for neutron-rich nuclei, we used the SLy4 Skyrme
force parametrization[23], as this was adjusted with special
emphasis on the properties of neutron matter. At present,
there also exist Skyrme forces that were adjusted exclusively
to nuclear masses[35]. These forces were used within a cal-
culation scheme that was not focused on weakly bound nu-
clei. In the pairing channel, we used a pure volume contact
pairing force Vdsr, r8d=V0dsr−r8d with strength V0
=−167.35 MeV fm3 and acting within a phase space limited
by a cutoff parameter[19] of emax=60 MeV.

Figure 2 summarizes the systematic results of our calcu-
lations, both for ground-state quadrupole deformations(up-
per panel) and for two-neutron separation energies(lower
panel). For this figure, calculations for a given mass number
A were carried out for increasing(decreasing) N−Z, up to the

nucleus with positive neutron(proton) Fermi energy. Fur-
thermore, for each nuclide, three independent sets of HFB
+THO+LN calculations were performed, for initial wave
functions corresponding to oblate, spherical, and prolate
shapes, respectively. Depending on properties of a given
nucleus, we could therefore obtain one, two, or three solu-
tions with different shapes. For each obtained solution we
performed a PNP calculation of the total energy. The lowest
of these energies for a given nucleus was then identified with
the ground-state solution.

Calculations of a microscopic mass table are greatly
helped by taking advantage of parallel computing. We have
used two IBM-SP computers at ORNL: Eagle, a 1 Tflop
machine, and Cheetah, a 4 Tflop machines1 Tflop=1
31012 operations/sd. The code performs at
350 Mflop/processor on Eagle. We created a simple load-
balancing routine that allows us to scale the problem to 200
processors. We are able to calculate the entire deformed
even-even mass table in a single 24 wall-clock hour run(or
approximately 4800 processor hours). A complete calculated
mass table is available online in Ref.[36].

The ground-state quadrupole deformationsb displayed in
Fig. 2 (upper panel) were estimated from the HFB+THO
+LN total quadrupole moments and rms radii through a
simple first-order expression[30]. In that panel, all even-
even nuclei with negative Fermi energies,ln,0 andlp,0,
are shown. In the lower panel, showing two-neutron separa-
tion energiesS2n, results are shown for thoseN andZ values
for which the nuclides with bothN and N−2 haveln,0.
Note that on the proton-rich side the lighter of them may

FIG. 2. (Color) Quadrupole
deformationsb (upper panel) and
two-neutron separation energies
S2n in MeV (lower panel) of
particle-bound even-even nuclei
calculated within the HFB+THO
method with Lipkin-Nogami cor-
rection followed by exact particle-
number projection. The Skyrme
SLy4 interaction and volume con-
tact pairing were used.
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havelp.0; nevertheless, we show these points to make the
proton drip line in theS2n panel identical to that of the quad-
rupole deformation panel. Of course, on the proton drip-line
values ofS2n are large and not very illuminating.

Table I summarizes our results for even-even nuclei along
the two-particle drip lines. More specifically, for each value
of Zø82, the results for the lightest isotope withlp,0 and
the heaviest isotope withln,0 are presented.

As can be seen from Fig. 2 and Table I, our calculations
produce several particle-bound even-even nuclei(i.e., nuclei
with negative Fermi energies) that at the same time have
negative two-proton(or two-neutron) separation energies.
Such an effect was already noticed in light nuclei in Ref.
[19]. The current calculations suggest it may be generic, oc-
curring near both the two-neutron and two-proton drip lines
and for nuclei as light as42Mg and as heavy as216Dy. It

TABLE I. Results of the HFB+THO calculations for drip-line nuclei with the SLy4 Skyrme force and volumed pairing force. The left
and right columns show results for proton and neutron drip-line isotopes from He to Pb. For both drip lines we show deformationsb, Fermi
energiesl (in MeV), two-particle separation energies(in MeV), and neutron and proton pairing gaps(in MeV).

Two-proton drip line Two-neutron drip line

Nucleus b lp S2p Dn+l2n Dp+l2p Nucleus b ln S2n Dn+l2n Dp+l2p

4He 0.00 −10.49 5.59 5.50 8He 0.00 −1.26 2.69 2.71 5.35
6Be 0.00 −2.13 1.79 5.51 2.89 12Be 0.00 −2.70 6.92 2.70 2.76
10C 0.00 −4.38 11.44 3.03 3.15 22C 0.00 −0.34 2.97 2.03 2.69
14O 0.00 −3.76 10.80 3.17 2.86 26O 0.00 −0.97 0.53 1.53 2.87
18Ne 0.00 −3.46 7.26 2.96 1.85 34Ne 0.28 −0.39 0.50 1.40 1.76
20Mg 0.00 −1.64 2.76 2.98 1.84 42Mg −0.18 −0.29 −0.44 1.09 1.64
24Si −0.07 −2.65 5.63 1.85 1.87 46Si 0.00 −0.99 1.71 1.07 1.86
28S 0.00 −2.08 6.10 1.92 1.92 52S 0.00 −0.05 −0.96 1.00 1.49
32Ar 0.00 −1.85 4.50 2.15 1.48 58Ar 0.00 −0.39 2.37 1.31 1.39
36Ca 0.00 −1.49 5.24 1.77 1.76 68Ca 0.00 −0.11 0.40 1.10 1.73
40Ti 0.00 −0.95 2.31 1.74 1.26 72Ti 0.00 −0.63 2.59 1.15 1.05
44Cr 0.00 −1.57 3.58 1.94 1.30 80Cr −0.00 −0.07 0.01 0.72 1.14
46Fe 0.00 −0.25 1.07 1.94 1.31 84Fe 0.00 −0.12 0.60 0.80 1.15
52Ni −0.03 −1.45 3.74 1.37 1.56 88Ni 0.00 −0.19 0.09 0.91 1.53
56Zn 0.13 −0.57 2.45 1.39 1.24 100Zn 0.24 −0.02 −0.29 0.90 1.10
60Ge −0.09 −0.17 0.63 1.67 1.22 108Ge 0.16 −0.13 0.12 0.93 1.07
64Se −0.17 −0.15 0.83 1.25 1.27 114Se 0.08 −0.27 0.69 0.91 1.08
70Kr −0.22 −1.10 2.67 1.38 1.10 118Kr 0.00 −0.23 3.29 1.20 1.08
72Sr 0.36 −0.16 −1.74 1.26 1.18 120Sr 0.00 −0.86 4.61 1.23 1.06
76Zr 0.00 −0.19 0.89 1.37 1.25 124Zr 0.00 −0.04 −0.74 0.60 1.05
82Mo 0.00 −0.83 2.09 1.37 0.98 132Mo 0.00 −0.05 0.14 0.66 0.87
86Ru 0.00 −0.83 2.27 1.13 0.98 142Ru 0.27 −0.02 0.23 0.84 0.89
90Pd 0.07 −0.90 2.57 1.11 0.93 150Pd −0.22 −0.02 −0.44 0.84 0.82
94Cd 0.00 −0.88 1.72 1.08 0.89 168Cd −0.02 −0.01 −0.62 0.82 0.75
102Sn 0.00 −0.80 6.03 0.99 1.54 174Sn 0.00 −0.27 1.11 0.76 1.16
108Te 0.16 −1.00 2.39 1.13 0.89 176Te 0.00 −0.83 1.90 0.78 0.77
112Xe 0.22 −0.83 2.54 1.10 0.88 178Xe 0.00 −1.37 2.82 0.80 0.83
116Ba 0.32 −1.02 2.60 1.07 0.87 182Ba 0.00 −0.28 4.36 1.26 0.87
118Ce 0.37 −0.19 1.71 1.12 0.87 186Ce 0.43 −0.11 −16.29 0.72 0.88
124Nd 0.38 −0.33 1.98 0.98 0.93 188Nd 0.44 −0.51 −15.32 0.75 0.71
130Sm 0.36 −0.64 2.09 1.00 0.83 204Sm 0.28 −0.01 0.11 0.69 0.75
134Gd 0.36 −0.44 1.60 0.99 0.82 208Gd 0.29 −0.20 0.84 0.73 0.74
138Dy 0.36 −0.12 0.78 0.98 0.82 216Dy −0.22 −0.02 −4.70 0.73 0.71
144Er −0.19 −0.41 1.64 0.89 0.89 222Er 0.28 −0.08 0.16 0.65 0.70
148Yb −0.16 −0.11 0.85 0.88 0.86 230Yb −0.21 −0.00 −0.06 0.70 0.71
152Hf −0.10 −0.05 0.59 0.82 0.92 254Hf 0.00 −0.02 0.72 0.86
158W −0.06 −0.50 1.36 0.84 0.94 256W 0.00 −0.30 0.70 0.83
162Os 0.11 −0.09 0.57 0.84 0.78 258Os 0.00 −0.57 0.51 0.67 0.79
168Pt 0.14 −0.04 0.43 0.96 0.66 260Pt 0.00 −0.83 1.19 0.65 0.73
172Hg −0.08 −0.04 −1.13 1.14 0.69 262Hg 0.00 −1.09 2.37 0.62 0.69
182Pb 0.00 −0.11 1.65 1.24 1.38 266Pb 0.00 −0.03 3.21 1.06 0.98
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seems to be related to the fact that the Fermi energies pertain
to stability with respect to particle emission of a given con-
figuration or shape, namely, that of the ground state. In many
of the cases in which we observe this phenomenon(a) the
neighboring even-even nucleus, the one to which it would
decay by two-nucleon emission, has two distinct shapes,
each with negative Fermi energies,(b) the ground state of
that neighboring nucleus has a shape that is different than
that of the parent nucleus,(c) the shape of the excited bound
configuration is the same as that of the parent nucleus, and
(d) decay to the excited configuration is energetically forbid-
den.

It should be stressed that the existence of particle-bound
even-even nuclei with negative two-particle separation ener-
gies, as emerge from our study, hinges on a very delicate
balance between pairing and deformation effects. In such a
situation, various corrections beyond mean field may turn out
to be important and thus modify some of our specific results.
In particular, clustering correlations have a potential to influ-
ence the dilute neutron skin that is present in nuclei near the
neutron drip line. Because of the high complexity of such
correlations, effects of this type cannot yet be systematically
studied in theory. Nevertheless, our analysis points out that
interesting new phenomena can be present in weakly bound
nuclei, and quantifies these possibilities within an approach
that can at present be applied in practice.

Of course, our results also depend sensitively on proper-
ties of the interaction, both in the particle-hole and particle-
particle channels. Despite its many good features, the force
we use is far from perfect. For example, the positions we
obtain for the two-neutron drip lines in the Be and O isotopes
are not correct. In addition, the method itself has limitations,
as it leaves out potentially important effects beyond mean
field. Despite these limitations, we feel it is nevertheless
worthwhile to point out some of the interesting new physical
situations that are predicted in these calculations and which
may therefore occur in weakly bound systems. The above
example of nuclei that are formally beyond one of the two-
particle drip lines but nevertheless are localized and do not
spontaneously spill off a nucleon is just one of several. We
will now discuss in greater detail some specific isotopic
chains to see how this and other interesting exotic new fea-
tures emerge.

We focus our discussion on the heaviest isotopes of four
isotopic chains; neon, magnesium, sulfur, and zinc(see Figs.
3–6, respectively). The figures show the Fermi energiesln,
ln8, andln9 [see Eqs.(2.13) and(2.14)], and the total binding
energies, obtained in constrained HFB+THO+LN+PNP cal-
culations as functions of the quadrupole deformationb for
the last three particle-bound isotopes of the respective
chains. In each figure, the binding energies of the last three
isotopes are shown on a common energy scale. As a re-
minder, two neutron separation energies can be readily ob-
tained from the binding energies according toS2n=EsZ, N
−2d−EsZ, Nd.

We should note that the minima of the constrained ener-
gies need not exactly correspond to the PNP of the HFB
+THO+LN minima, which were used in Fig. 2 and Table I.

Indeed, in the constrained calculations the deformation
serves as an additional variational parameter for the variation
after PNP. Optimally, the full variation after projection
should be performed, which, however, requires a much larger
numerical effort, and is left for future work. Such an optimal
method will also remove the ambiguities related to the defi-
nition of the Fermi energy, discussed in Sec. II. At present,
we illustrate these ambiguities by showing in Figs. 3–6 the
three possible values of the Fermi energy,ln, ln8, andln9.

Consider first the Ne isotopes, for which the results are
shown in Fig. 3. For the SLy4 interaction that we use, a
strong shell gap atN=20 persists up to the heaviest isotopes
of Ne, and this produces a stiff spherical minimum for30Ne.
Adding two neutrons gives rise to the nucleus32Ne, which is
particle boundsln,0d, but at the same time two-neutron
unstablesS2n,0d. (Note that this nucleus does not exactly fit
into the picture given earlier for such nuclei.) Interestingly,
when we add two more neutrons, we obtain a strongly(pro-

FIG. 3. Neutron Fermi energiesl (upper panels) and the total
binding energies(lower panels) calculated for30Ne, 32Ne, and34Ne
as functions of the quadrupole deformationb.

FIG. 4. Same as in Fig. 3 but for38Mg, 40Mg, and42Mg.
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late) deformed particle-bound ground configuration in34Ne,
which is again two-neutron stablesS2n.0d.

Next we turn to the Mg isotopes, for which results are
presented in Fig. 4. In40Mg the neutron Fermi energiesln
have negative values for all deformations, so that the con-
figurations for all deformations are particle bound, with the
prolate minimum being slightly lowest. The same is also true
for the next nucleus42Mg where the ground state deforma-
tion changes from prolate to oblate. It is clear from Fig. 4
that in 42Mg the two-neutron separation energy is negative;
however, since42Mg and40Mg have different shapes in their
ground states, the real process of emitting two neutrons may
occur towards the shape isomer in40Mg. (The situation will
be even more complicated if the oblate minimum in42Mg is
unstable to triaxial deformations, i.e., it is a saddle point.)

The results for the S isotopes are given in Fig. 5. Here, the
spherical HFB+THO+LN minimum in52S is shifted in the
constrained PNP calculations towards a small oblate defor-
mation. All shapes appear to be very weakly particle bound,

and have negative two-neutron separation energies at the
same time. It is obvious that in the case of so poorly defined
minimum, its precise location is not relevant and full con-
figuration mixing, e.g., within the generator coordinate
method(GCM) [30,37,38], should be applied. This compli-
cation specific to weakly bound nuclei is related to the fact
that it is not clear how to take into account in the GCM the
regions of the collective coordinate corresponding tol.0,
hence to particle-unbound states.

In the results for the zinc isotopes(Fig. 6), we see strong
competition between oblate, prolate, and spherical shapes. In
96Zn, all shapes are particle bound and the ground state is
oblate. The situation changes in98Zn, where the oblate con-
figuration, though lowest in energy, becomes particle un-
bound and the prolate minimum becomes the ground-state
configuration. Though this ground state is two-neutron un-
stablesS2n,0d, its decay to the ground state of96Zn may be
hindered by the shape change. Finally, in100Zn the particle-
stable prolate ground state is also two-neutron unstable.
Hence in this isotopic chain the lasttwo even isotopes are
unstable with respect to two-neutron emission.

In heavier nuclei near the neutron drip line, we often ob-
tain particle-stable and two-neutron-unstable isotopes right
after closed neutron magic shells. As in Ne, this reflects the
fact that strong shell gaps persist up to the heaviest isotopes
in a chain when the calculations are based on the SLy4 in-
teraction. In theN=126 isotopes of Ce and Nd, for example,
the ground-state configurations are strongly spherical. In the
neighboringN=128 isotopes, these spherical configurations
become particle unbound. However, in these same isotopes,
there are strongly prolate particle-bound configurations with
very large negative two-neutron separation energies(see
Table I). An analogous situation occurs in theN=186 and
188 drip-line nuclei, where the lasttwo even isotopes may
have particle-bound prolate states with unbound spherical
configurations.

Strong SLy4 neutron magic numbers also result in the
characteristic nonmonotonic behavior of theS2n values(Fig.
2). Indeed, lines of constantS2n often follow decreasingZ
with increasingN, which is particularly conspicuous nearN
=126. This effect even creates a smallpeninsulaof stability
nearN=140. Such strong neutron closed shells could create
the well-known deficiencies in ther-process abundances
[39].

V. CONCLUDING REMARKS

In this paper, we have reported the development of an
improved version of the configuration-space HFB method
expanded in a transformed harmonic-oscillator basis. In its
current form, the method can be used reliably in systematic
studies of wide ranges of nuclei, both spherical and axially
deformed, extending all the way out to the nucleon drip
lines. The key step was the development of a prescription for
choosing a reliable transformation function to define the
THO basis that does not require variational optimization.
The current prescription only involves information from a
preliminary configuration-space HFB calculation carried out
in a harmonic-oscillator basis. The transformation function is

FIG. 5. Same as in Fig. 3 but for48S, 50S, and52S.

FIG. 6. Same as in Fig. 3 but for96Zn, 98Zn, and100Zn.
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then tailored to correct the asymptotic properties of the
HFB+HO results. The resulting HFB+THO theory accu-
rately reproduces results of coordinate-space HFB theory,
where available, and also reproduces the results obtained
with an earlier version of the transformation that had to be
optimized separately for each nucleus.

As a first application of the new HFB+THO methodol-
ogy, we carried out a systematic study of all even-even nu-
clei having Zø108 and Nø188. Variation after particle-
number projection was approximately included using the
Lipkin-Nogami method, with exact projection performed for
the final self-consistent solutions. We focussed our discus-
sion on those nuclei that are very near the nucleon drip lines,
finding that in several regions of the periodic table there exist
nuclei that are stable against one-particle emission but un-
stable against pair emission. We showed that invariably this
is associated with a shape change in the ground state. For
example, while two-particle emission to the configuration of
the daughter with the same shape as the parent is forbidden,
a decay to the ground state having a different shape can
nevertheless occur. The associated change in shape may con-
ceivably lead to sufficient hindrance of the decay, hence the
longer lifetime. Consequently, it is conceivable that there ex-
ist nuclei that formally live beyond the neutron drip line but
can be observed experimentally. This phenomenon, which
had earlier been noted in calculations of light nuclei, is now
seen to be a more common feature of nuclei near the neutron
drip line.

In the description of very weakly bound systems, small
changes in the results can have important consequences,
changing, for example, the precise locations of the drip lines.
It is important, therefore, to continue to improve the current
HFB+THO methodology to accommodate effects not pres-
ently being included. Particularly important could be effects
that arise beyond mean field. It is also important to develop
the new HFB+THO formalism for application to odd-mass
systems, including the effects of Pauli blocking. But most
crucial, in our opinion, is to develop new-generation energy
density functionals that will allow for more reliable predic-
tions of the properties of exotic nuclei. Work along these
various lines is currently underway.
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