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In the present study we generalize the self-consistent Hartree-Fock-Bogoliubov(HFB) theory formulated in
the coordinate space to the case which incorporates an arbitrary mixing between protons and neutrons in the
particle-holesp-hd and particle-particle(p-p or pairing) channels. We define the HFB density matrices, discuss
their spin-isospin structure, and construct the most general energy-density functional that is quadratic in local
densities. The consequences of the local gauge invariance are discussed and the particular case of the Skyrme
energy-density functional is studied. By varying the total energy with respect to the density matrices the
self-consistent one-body HFB Hamiltonian is obtained and the structure of the resulting mean fields is shown.
The consequences of the time-reversal symmetry, charge invariance, and proton-neutron symmetry are sum-
marized. The complete list of expressions required to calculate total energy is presented.
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I. INTRODUCTION

One of the main goals of nuclear theory is to build the
unified microscopic framework for heavy nuclei in which the
bulk nuclear properties, nuclear excitations, and nuclear re-
actions can be described on the same footing. Microscopic
theory also provides the solid foundation for phenomenologi-
cal models and coupling schemes which have been applied
so successfully to explain specific nuclear properties. Exotic
short-lived nuclei are very important in this quest. The ab-
normal neutron-to-proton ratios of these nuclei isolate and
amplify important features, which are not clearly visible in
stable systems.

For medium-mass and heavy nuclei, a critical challenge is
the quest for the universal energy-density functional, which
will be able to describe properties of finite nuclei as well as
extended asymmetric nucleonic matter(e.g., as found in neu-
tron stars). Self-consistent methods based on the density
functional theory have already achieved a level of sophisti-
cation and precision which allows analyses of experimental
data for a wide range of properties and for arbitrarily heavy
nuclei. For instance, self-consistent Hartree-Fock and
Hartree-Fock-Bogoliubov(HFB) models are now able to re-
produce measured nuclear binding energies with an impres-
sive rms error of,700 keV [1,2]. However, much work re-
mains to be done. Developing a universal nuclear density
functional will require a better understanding of the density
dependence, isospin effects, pairing, as well as an improved
treatment of many-body correlations. All those aspects are
essential for the structure of proton-rich nuclei withN<Z,
which are expected to exhibit proton-neutron(pn) pairing

[3]; it is precisely in those nuclei that the state-of-the-art
microscopic mass formula needs to be supplemented by a
phenomenological Wigner term[1,2].

In spite of an impressive experimental progress in the
heavy N<Z region, it is still unclear(i) what the specific
fingerprints of thepn pairing are and(ii ) what is the interplay
between the like-particle andpn sT=0, 1d p-h, andp-p chan-
nels. Before attempting to answer these questions, estab-
lished theoretical models of nuclear pairing need to be gen-
eralized to properly account forpn correlations. The present
work is a step in this direction. We propose the general HFB
formalism which fully incorporates thepn mixing on the
mean-field level. The resulting density matrices have a very
rich spin-isospin structure, which, in the presence of staticpn
pairing, can produce novel mean fields and deformations.

The paper is organized as follows. Section II contains a
brief review of thepn pairing. Section III discusses the den-
sity matrices(scalar, vector, and tensor), both in thep-n and
p-p channel. The discussion is based on the coordinate-space
HFB formalism [4–6], which was introduced earlier to de-
scribe pairing correlations between like nucleons. This
method is the tool of choice when dealing with weakly
bound heavy nuclei[7]. The energy functional is constructed
in Sec. IV, the associated mean fields are derived in Sec. V,
and Sec. VI deals with the resulting coordinate-space HFB
equations. In the discussion ofpn pairing, the notion of self-
consistent symmetries, especially those associated with
charge invariance and time reversal, is crucial, and we de-
vote Sec. VII to this topic. Finally, conclusions are contained
in Sec. VIII.

II. PROTON-NEUTRON PAIRING, A CONCISE
OVERVIEW

A unique aspect of proton-rich nuclei withN<Z is that
neutrons and protons occupy the same single-particle orbit-
als. Consequently, due to the large spatial overlaps between
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neutron and proton single-particle wave functions,pn pairing
is expected to be present in those systems.

So far, the strongest evidence for enhancedpn correla-
tions around theN=Z line comes from the measured binding
energies[8–16] and the isospin structure of the low-lying
states in odd-odd nuclei[16–28]. The pn correlations are
also expected to play some role in single-b decay[29–31],
double-b decay [32–38], transfer reactions[39–45] (see,
however, Ref.[16]), structure of low-lying collective states
[46], a decay anda correlations[45,47–52], structure of
high spin states[14,20,53–79], and in properties of low-
density nuclear matter[80–90].

Actually, thepn pairing is not “the new kid on the block”
but it has a long history and is ultimately connected to the
charge invariance of the strong Hamiltonian.(For reference,
in 1932 Heisenberg introduced isotopic spin[91] and in 1936
Wigner introduced the nuclear SU(4) supermultiplets[92].)
An important step was the adaptation of Racah’s concept of
seniority by Racah and Talmi[93], and Flowers[94] in 1952.
In the independent quasiparticle(BCS) picture [95], pairing
condensate appears as a result of an attractive interaction
between quasiparticles near the Fermi surface. The term
“nuclear superconductivity” was first used by Pines at the
1957 Rehovot conference to point out that the new BCS
theory might also apply to nuclei[96]. This was formally
accomplished in the late 1950s[97,98] and shortly after-
wards the importance ofpn pairing was emphasized
[47,99,100] and a number of theoretical papers dealing with
the generalization of the BCS theory to thepn pairing case
appeared[101–103].

Independently, group-theoretical methods based on the
quasispin formalism were developed. Many insights were
gained by simple solvable models employing symmetry-
dictated interactions[104–111]. Two families of models
were used, one based on thej- j coupling with the symmetry
SO(5) (appropriate for theT=1 pairing) and the other based
on theL-S coupling with the symmetry SO(8) (appropriate
for theT=0 andT=1 pairing). These models have been con-
secutively developed and applied to various physically inter-
esting cases[36,42,44,45,112–114]. Among many techniques
used to solve the problem ofpn pairing with schematic in-
teractions, worth mentioning are the exact methods
[43,115,116] used to describe isovector states of a charge-
independent pairing Hamiltonian.

Properties ofpn pairing (at low and high spins, in cold
and hot nuclei) have been studied within the large-scale shell
model (diagonalization shell-model, variational shell model,
and Monte Carlo shell model) [20,21,64,69,70,90,117–123].
It was concluded that the isovector pairing in the dominating
J=0 channel mainly acts between time-reversed states within
the same shell. On the other hand, isoscalar pairing can also
involve coupling(mainly J=1) between spin-orbit partners.
Consequently, spin-orbit splitting plays a crucial role in un-
derstanding theT=0 pairing[20].

It is to be noted that it is by no means obvious how to
extract “pairing correlations” from the realistic shell-model
calculations. The “pairing Hamiltonian” is an integral part of
the residual shell-model interaction. The shell-model Hamil-
tonian is usually written in thep-p representation, but it also
can be transformed to thep-h representation by means of the

Pandya transformation[124]. This means that the high-J in-
teraction between pairs can translate into the low-J interac-
tion in the p-h channel. It is only in the mean-field theory
that the division into “particle-hole” and “particle-particle”
channels appears naturally. One way of translating the shell-
model results into mean-field language is by means of corr-
elators, such as the number ofT=0 andT=1 pairs in the
shell-model wave function[69,112,120,125].

The extension of the interacting boson models(IBM ) to
the case ofpn bosons had to wait until 1980, when IBM-3
(only T=1 pairs [126]) and IBM-4 (both sT=1,S=0d and
sT=0,S=1d bosons[127]) were proposed. For recent appli-
cations of various algebraic models, see Refs.[26,128–138].

An alternative strategy to thepn pairing problem is via
the mean-field approach. Here, the major conceptional step
was the proposition that quasiparticles are mixtures not only
particles and holes but also protons and neutrons. The result-
ing HFB quasiparticle vacuum is a superposition of wave
functions corresponding to even-even and odd-odd nuclei
with different particle numbers. Unlike in the standardnn
and pp pairing cases, the coefficients of the Bogoliubov
transformation are, in general, complex. Generalized
Bogoliubov transformation, generalized gap equations,
and pn pairing fields are discussed in Refs.
[3,53,55,57,62,65,67,68,101,139–161].

The problem of the spontaneous isospin breaking in the
mean-field theory was realized soon after the development of
the generalized quasiparticle approach[48,144,148]. The
symmetry is broken by the independent(separate) treatment
of T=1 proton and neutron pairing correlations and by the
BCS quasiparticle mean field(the generalized product wave
function is not an eigenstate of isospin). Several techniques
have been developed to restore isospin. They include the
generator coordinate method, random phase approximation,
Kamlah expansion, isocranking, and exact projection
[15,16,27,37,48,67,144,148,162–166]. It is fair to say, how-
ever, that in spite of many attempts to extend the quasiparti-
cle approach to incorporate the effect ofpn correlations, no
symmetry-unrestricted mean-field calculations ofpn pairing,
based on realistic effective interaction and the isospin-
conserving formalism have been carried out.

III. DENSITY MATRICES IN THE ISOSPIN SPACE

We begin with the discussion of the building blocks of the
HFB theory: one-body density matrices. In the HFB theory,
expectation values of all observables and, in particular, of the
nuclear Hamiltonian can be expressed as functionals of the
density matrixr̂ and the pairing tensork̂ defined as[167]

r̂srst, r8s8t8d = kCuar8s8t8
† arstuCl, s1ad

k̂srst, r8s8t8d = kCuar8s8t8arstuCl, s1bd

wherearst
† andarst create and annihilate, respectively, nucle-

ons at pointr, spins= ± 1
2 and isospint= ± 1

2, while uCl is the
HFB independent-quasiparticle state. Instead of using the an-
tisymmetric pairing tensor it is more convenient to introduce
the p-p density matrices that can be defined in two forms,r̂̃
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or r̂̆, denoted by “tilde” and “breve,” respectively,

r̂̃srst, r8s8t8d = − 2s8kCuar8−s8t8arstuCl, s2ad

r̂̆srst, r8s8t8d = 4s8t8kCuar8−s8−t8arstuCl. s2bd

In Ref. [5], p-p density matrixr̂̃ was used to treat then-n
andp-p pairing correlations without the proton-neutron mix-
ing. It was then shown that for conserved time-reversal sym-
metry r̂̃ is Hermitian, and leads top-p local densities that
have the structure which is analogous to that of thep-h local
densities. However, in the case of the proton-neutron mixing
studied here, we decided to use thep-p density matrix r̂̆,
because it allows a more transparent treatment of the iso-
scalar and isovector pairing channels. Detailed discussion of
this point will be presented in Sec. III C below.

With each of density matrices of Eqs.(1a) and(2b) three
other matrices are associated: the Hermitian conjugate matri-
ces defined as

r̂+srst, r8s8t8d = r̂*sr8s8t8, rstd, s3ad

r̂̆+srst, r8s8t8d = r̂̆*sr8s8t8, rstd, s3bd

the time-reversed matrices defined as

r̂Tsrst, r8s8t8d = 4ss8r̂*sr − st, r8 − s8t8d, s4ad

r̂̆Tsrst, r8s8t8d = 4ss8r̂̆*sr − st, r8 − s8t8d, s4bd

the charge-reversed matrices defined as

r̂Csrst, r8s8t8d = 4tt8r̂srs− t, r8s8 − t8d, s5ad

r̂̆Csrst, r8s8t8d = 4tt8r̂̆srs− t, r8s8 − t8d, s5bd

where the asterisk stands for the complex conjugation.
Here and below we present full sets of expressions even

in those cases when they could, in principle, be replaced by
verbal descriptions. We do so in order to avoid possible con-
fusion at the expense of a slight increase in the length of the
paper. We think that such an approach is highly beneficial to
the reader, because in many cases small but significant dif-
ferences appear in expressions that otherwise could have
seemed analogous to one another.

The charge-reversal operationC defined in Eq.(5) ex-
changes the neutron and proton charges, or equivalently, flips
their isospin projections. Note that the time reversal is anti-
linear while the charge reversal is a linear operation, and that
they commute with one another. Symmetries of the density
matrices can be conveniently expressed in terms of just the
Hermitian conjugation, and time and charge reversals,
namely, it follows from definitions(1a) and (2b) that

r̂+ = r̂, s6ad

r̂̆+ = − r̂̆TC, s6bd

where the superscriptTC denotes superposition of the time
(4) and charge(5) reversals.

For uCl being an independent-quasiparticle state the den-
sity matrices fulfill the following kinematical conditions:

r̂ • r̂̆ = r̂̆ • r̂TC, s7ad

r̂ = r̂ • r̂ + r̂̆ • r̂̆+, s7bd

where • stands for integration over spatial coordinates and
summation over spin and isospin indices, denoted byXdx,
e.g.,

sr̂ • r̂̆dsr1s1t1, r2s2t2d = sr̂ • r̂̆dsx1, x2d = X dxr̂sx1, xdr̂̆sx, x2d

=E d3ro
st

r̂sr1s1t1, rstdr̂̆srst, r2s2t2d,

s8d

where we also abbreviated the space-spin-isospin variables
by x;hrstj. Equationss7d secure the projectivity of the gen-
eralized density matrix

R̂̆ = ŴR̂Ŵ+ = S r̂ r̂̆

r̂̆+ 1̂ − r̂TC
D , s9d

where 1̂:=dsx−x8d:=dsr −r8ddss8dtt8 and the unitary matrix

Ŵ,

Ŵ = S1̂ 0

0 − ŝyt̂2
D , s10d

transforms the standard generalized density matrixR̂ scf.
Ref. f167gd to the breve representation.

When the pairing correlations of only like nucleons are
taken into account, none but the diagonal(off-diagonal) ma-
trix elements of density matrixr̂sr̂̆d in isospin indices are
considered. However, in a general case of pairing correla-
tions between both, like and unlike nucleons, the remaining
matrix elements become relevant as well. Therefore, in the
following sections we specify the spin-isospin structure of
the p-h andp-p density matrices explicitly.

A. Nonlocal densities

The density matrices in the spin and isospin spaces can be
expressed as linear combinations of the unity and Pauli ma-
trices. To write the corresponding formulas the following no-
tation is assumed. Vectors and vector operators in the physi-
cal three-dimensional space are denoted with boldface
symbols, e.g.,r or =, and the second rank tensors with sans
serif symbols, e.g.,J. Scalar products of three-dimensional
space vectors are, as usual, denoted with the central dot,r ·=.
The components of vectors and tensors are labeled with in-
dicesa, b, c and the names of axes arex, y, and z, e.g., r
=srx, ry, rzd. In order to make a clear distinction, vectors in
isospace are denoted with arrows and scalar products of them
with the circle:vW +wW . The components of isovectors are la-
beled with indicesi, k, and the names of isoaxes are 1, 2, and
3, e.g., vW =sv1, v2, v3d. Finally, isoscalars are marked with
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subscript “0,” and we often combine formulas for isoscalars
and isovectors by letting the indices run through all the four
values, e.g.,k=0, 1, 2, 3.

With this convention the density matrices have the follow-
ing form:

r̂srst, r8s8t8d =
1

4
r0sr, r8ddss8dtt8 +

1

4
dss8rWsr, r8d + tŴtt8

+
1

4
s0sr, r8d · ŝss8dtt8 +

1

4
sWsr, r8d · ŝss8 + tŴtt8,

s11ad

r̂̆srst, r8s8t8d =
1

4
r̆0sr, r8ddss8dtt8 +

1

4
dss8r̆

Wsr, r8d + tŴtt8

+
1

4
s̆0sr, r8d · ŝss8dtt8 +

1

4
s̆Wsr, r8d · ŝss8 + tŴtt8,

s11bd

where tŴtt8=st̂tt8
1 , t̂tt8

2 , t̂tt8
3 d and ŝss8=sŝss8

x , ŝss8
y , ŝss8

z d are the
isospin and spin Pauli matrices, respectively, which are ac-
companied by the corresponding unity matrices,t̂tt8

0 =dtt8 and
ŝss8

u =dss8. The density matrices defined in Eqs.(1a) and(2b)
are now expressed by several functions of the pair of position
vectorsr andr8. To avoid confusion, the functions appearing
on the right-hand sides of Eqs.(11) will be called the(non-
local) density functions or, simply, densities, unlike the den-
sity matrices of Eqs.(1a) and(2b) appearing on the left-hand
sides.

The densities are traces in spin and isospin indices of the
following combinations of the density and the Pauli matrices.

(1) Scalar densities are the following.
(a) p-h isoscalar and isovector densities

r0sr, r8d = o
st

r̂srst, r8std, s12ad

rWsr, r8d = o
stt8

r̂srst, r8st8dtŴt8t. s12bd

(b) p-p isoscalar and isovector densities

r̆0sr, r8d = o
st

r̂̆srst, r8std, s13ad

r̆Wsr, r8d = o
stt8

r̂̆srst, r8st8dtŴt8t. s13bd

(2) Vector densities are the following.
(a) p-h spin isoscalar and isovector densities

s0sr, r8d = o
ss8t

r̂srst, r8s8tdŝs8s, s14ad

sWsr, r8d = o
ss8tt8

r̂srst, r8s8t8dŝs8stŴt8t. s14bd

(b) p-p spin isoscalar and isovector densities

s̆0sr, r8d = o
ss8t

r̂̆srst, r8s8tdŝs8s, s15ad

s̆Wsr, r8d = o
ss8tt8

r̂̆srst, r8s8t8dŝs8stŴt8t. s15bd

Since thep-h density matrix and the Pauli matrices are both
Hermitian, all thep-h densities are Hermitian too,

r0sr, r8d = r0
*sr8, rd, s16ad

rWsr, r8d = rW*sr8, rd, s16bd

s0sr, r8d = s0
*sr8, rd, s16cd

sWsr, r8d = sW*sr8, rd, s16dd

and hence, their real parts are symmetric, while the imagi-
nary parts are antisymmetric, with respect to transposition of
spatial argumentsr and r8.

On the other hand, the unity matricesŝss8
u =dss8 and t̂tt8

0

=dtt8 (scalar and isoscalar) areTC symmetric, while the vec-
tor and isovector Pauli matrices areTC antisymmetric, i.e.,

ŝss8 = − 4ss8ŝ−s−s8
* , s17ad

tŴtt8 = − 4tt8tŴ−t−t8
* . s17bd

We should stress here again that operationTC is antilinear,
and therefore, complex conjugation appears in all right-hand
sides of Eqs.(17), although only the Pauli matricessy andt2
are imaginary.

Since thep-p density matrix transforms underTC as in
Eq. (6b), the p-p densities are either symmetric(scalar-
isovector and vector-isoscalar) or antisymmetric (scalar-
isoscalar and vector-isovector) under the transposition of
their arguments, namely,

r̆0sr, r8d = − r̆0sr8, rd, s18ad

r̆Wsr, r8d = r̆Wsr8, rd, s18bd

s̆0sr, r8d = s̆0sr8, rd, s18cd

s̆Wsr, r8d = − s̆Wsr8, rd. s18dd

Equations(16) and (18) are fulfilled independently of any
other symmetries conserved by the system; they result from
general properties(6) of density matricesr̂ and r̂̆.

B. Local densities

In the HFB theory with the zero-range Skyrme interaction
[168,169] or in the local density approximation(LDA ) (cf.
Refs.[167,170]), the energy functional depends only on local
densities and on local densities built from derivatives up to
the second order. These local densities are obtained by set-
ting r8=r in Eqs. (12)–(15) after the derivatives are per-
formed. They will be denoted by having one spatial argu-
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ment to distinguish them from the nonlocal densities that
have two. Moreover, for local densities the spatial argument
will often be omitted in order to lighten the notation.

Following the standard definitions[171,172], a number of
local densities are introduced.

(1) Scalar densities are the following.
(a) Particle and pairing densities

rksrd = rksr, r8dr=r8, s19ad

r̆Wsrd = r̆Wsr, r8dr=r8. s19bd

(b) p-h andp-p kinetic densities

tksrd = fs= · =8drksr, r8dgr=r8, s20ad

t̆Wsrd = fs= · =8dr̆Wsr, r8dgr=r8. s20bd

(2) Vector densities are the following.
(a) p-h andp-p spin (pseudovector) densities

sksrd = sksr, r8dr=r8, s21ad

s̆0srd = s̆0sr, r8dr=r8. s21bd

(b) p-h andp-p spin-kinetic(pseudovector) densities

Tksrd = fs= · =8dsksr, r8dgr=r8, s22ad

T̆0srd = fs= · =8ds̆0sr, r8dgr=r8. s22bd

(c) p-h andp-p current(vector) densities

jksrd =
1

2i
fs=− =8drksr, r8dgr=r8, s23ad

j̆0srd =
1

2i
fs=− =8dr̆0sr, r8dgr=r8. s23bd

(d) p-h andp-p tensor-kinetic(pseudovector) densities

Fksrd =
1

2
fs= ^ =8 + =8 ^ =d ·sksr, r8dgr=r8, s24ad

F̆0srd =
1

2
fs= ^ =8 + =8 ^ =d · s̆0sr, r8dgr=r8. s24bd

(3) Tensor densities are the following.
p-h andp-p spin-current(pseudotensor) densities

Jksrd =
1

2i
fs=− =8d ^ sksr, r8dgr=r8, s25ad

J̆Wsrd =
1

2i
fs=− =8d ^ s̆Wsr, r8dgr=r8, s25bd

wherek=0, 1, 2, 3, and̂ stands for the tensor product of
vectors in the physical space, e.g.,sv ^ wdab;vawb and fsv
^ wd ·zga;vasw·zd. Note that for particle, pairing, kinetic,
spin, spin-kinetic, and tensor-kinetic densities only the sym-

metric nonlocal densities contribute, while for the current
and spin-current densities only antisymmetric ones contrib-
ute. It is then clear that for eachp-h density there exist both
isoscalar and isovector component, while for thep-p densi-
ties, the isovector component exists only for the pairing, ki-
netic, and spin-current densities, while the isoscalar one ex-
ists only for spin, spin-kinetic, tensor-kinetic, and current
densities.

We note here in passing that the complete list of all local
densities(up to the derivatives of the second order) also in-
cludes the kinetic and spin-kinetic densities in which the two
derivatives are coupled to a tensor, i.e.,= ^ =8. The resulting
local densities are usually disregarded, because they do not
have counterparts to form useful terms in the local energy
density. There is one set of exceptions, which has been over-
looked in the systematic construction presented in Ref.
[173], and appears in the averaging of a zero-range tensor
force [171], namely, the set of the tensor-kinetic local densi-
ties (24). In Sec. IV we define terms in the energy density
that depend on the tensor-kinetic densities.

All tensor densities(25) can be decomposed into trace,
antisymmetric, and symmetric parts, giving the standard
pseudoscalar, vector, and pseudotensor components that we
show here to fix the notation

Jksrd = o
a=x,y,z

Jkaasrd, s26ad

J̆Wsrd = o
a=x,y,z

J̆Waasrd, s26bd

Jkasrd = o
b,c=x,y,z

eabcJkbcsrd, s27ad

J̆Wasrd = o
b,c=x,y,z

eabcJ̆
W

bcsrd, s27bd

JIkabsrd =
1

2
Jkabsrd +

1

2
Jkbasrd −

1

3
Jksrddab, s28ad

J̆WIabsrd =
1

2
J̆Wabsrd +

1

2
J̆Wbasrd −

1

3
J̆Wsrddab, s28bd

wherek=0, 1, 2, 3.
It follows from Eqs.(16) and (18) that thep-h densities

are all real whereas thep-p densities are in general complex
and thus the complex-conjugate densities are relevant. The
p-p densities become real or imaginary only when the time-
reversal symmetry is conserved, see Sec. VII.

Instead of the isoscalar and the third component of is-
ovectorp-h density one can always use the neutron and the
proton one, e.g.,

rnsrd =
1

2
fr0srd + r3srdg, s29ad
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rpsrd =
1

2
fr0srd − r3srdg, s29bd

and just the same for all otherp-h densities. Similarly, in-
stead of thek=1, 2 isovectorp-p densities one can use the
neutron and proton pairing density, i.e.,

r̆nsrd =
1

2
fr̆1srd + i r̆2srdg, s30ad

r̆psrd =
1

2
fr̆1srd − i r̆2srdg, s30bd

and just the same for all otherp-p densities.

C. The TC symmetry

When constructing the energy-density functional(Sec.
IV ) from the local densities(19)–(25) one should ensure that
it is invariant with respect to the following: 1° spatial rota-
tions, 2° isospin rotations, 3° space inversion, and 4° time
reversal. All the local densities of Sec. III B have definite
transformation properties with respect to the first three of
those, 1°–3°, so one can easily construct the corresponding
invariants by multiplying densities of the same type by one
another. For example, a product of any pseudovector-
isoscalar density with itself, or with any other pseudovector-
isoscalar density, is an invariant.

The time-reversal symmetry cannot be immediately
treated on the same footing, because the time-reversal and
the isospin rotations do not commute. However, as noted in
Ref. [174], for problems involving the isospin symmetry it is
more convenient to use theTC symmetry instead of the time
reversal. Indeed, since the charge reversalC is equivalent to
a rotation by the anglep about the isoaxisk=2, for con-
served isospin the conservation ofTC is equivalent to con-
servation ofT alone. Therefore, in order to construct the
energy density which is also time-reversal invariant, we
should classify the local densities according to theTC sym-
metry and then multiply by one another only densities with
the sameTC transformation properties.

To this end, we split thep-h andp-p density matrices into
parts that are symmetric and antisymmetric with respect to
the TC reversal, i.e., explicitly,

r̂±sx, x8d =
1

2
fr̂sx, x8d ± 16ss8tt8r̂*sx, x8dg, s31ad

r̂̆±sx, x8d =
1

2
fr̂̆sx, x8d ± 16ss8tt8r̂̆*sx, x8dg, s31bd

where we used a short-hand notation ofx;hr, −s, −tj. In
conjunction with theTC transformation properties of the
Pauli matrices(17), one then immediately obtains that the
corresponding nonlocal densities of Sec. III A are either real
or imaginary, i.e.,

r0±sr, r8d = ± r0±
* sr, r8d, s32ad

rW±sr, r8d = 7 rW±
* sr, r8d, s32bd

s0±sr, r8d = 7 s0±
* sr, r8d, s32cd

sW±sr, r8d = ± sW±
* sr, r8d s32dd

and

r̆0±sr, r8d = ± r̆0±
* sr, r8d, s33ad

r̆W±sr, r8d = 7 r̆W±
* sr, r8d, s33bd

s̆0±sr, r8d = 7 s̆0±
* sr, r8d, s33cd

s̆W±sr, r8d = ± s̆W±
* sr, r8d. s33dd

This result shows that real and imaginary parts of nonlo-
cal densities(12)–(15) have oppositeTC transformation
properties. From Eqs.(32) one then obtains classification of
local p-h densities, namely, the isoscalar densitiesr0srd,
t0srd, and J0srd are TC symmetric ands0srd, T0srd, F0srd,
andj0srd areTC antisymmetric, while the isovector densities

rWsrd, tWsrd, and JWsrd are TC antisymmetric andsWsrd, TW srd,
FW srd, and jWsrd areTC symmetric.

The rules of constructing thep-h energy density are thus
identical to those valid in the case of no proton-neutron mix-
ing [172]. On the other hand, from Eqs.(33) one obtains
classification of localp-p densities, namely, real parts of all
p-p densities areTC antisymmetric and imaginary parts are
TC symmetric. Thep-p energy density must therefore be
built by multiplying real parts of different densities with one
another, and separately imaginary parts also with one an-
other. These rules are at the base of the energy-density func-
tional constructed in Sec. IV.

IV. THE ENERGY-DENSITY FUNCTIONAL

In the HFB theory the expectation value of Hamiltonian
in stateuCl is a functional of the density matrices, and reads

EHFB = kCuHuCl = Hfr̂, r̂̆, r̂̆+g

= TrsT̂ • r̂d +
1

2
TrsĜ • r̂ + Ĝ̆ • r̂̆+d, s34d

where Trdenotes integration over spatial coordinates and
summation over spin and isospin indices. Nuclear many-
body HamiltonianH,

H =Xdx8dxT̂sx8, xdax8
† ax

+
1

4
X dx18dx28dx1dx2V̂sx18x28, x1x2dax18

† ax28
† ax2

ax1
s35d

is composed of one-body kinetic energyT and two-body

interactionV, being expressed in Eq.s35d by matrix T̂sx8, xd
and the antisymmetrized matrix elementsV̂sx18x28, x1x2d, re-

spectively. MatricesĜ andĜ̆ are the single-particlesp-hd and
pairing sp-pd self-consistent potentials, respectively,

Ĝsx18, x1d =Xdx28dx2V̂p-hsx18x28, x1x2dr̂sx2, x28d, s36d
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Ĝ̆sx18, x28d =Xdx1dx2F2V̂p-psx18x28, x1x2dr̂̆sx1, x2d, s37d

whereF2=8s28s2t28t2 andx;hr, −s, −tj. In Eqs.s36d ands37d
we have indicated that thep-h and p-p potentials can be
determined bydifferenttwo-body interactions,Vp-h andVp-p,
called effective interactions in thep-h and thep-p channel,
respectively. This places further derivations in the frame-
work of the energy-density formalism that is not based on a
definite Hamiltonians35d. Moreover, effective interactions,
Vp-h andVp-p, are supposed to be, in general, density depen-
dent.

In the case of the Skyrme effective interaction as well as
in the framework of the LDA, the energy functional of Eq.
(34) is a three-dimensional spatial integral,

H =E d3rHsrd, s38d

of local energy densityHsrd that is a real, scalar, time-even,
and isoscalar function of local densities and their first and
second derivatives.sIsospin-breaking terms, such as those
resulting from different neutron and proton masses and from
the Coulomb interaction, can be easily added and, for sim-
plicity, are not considered in the present study.d In the case
of no proton-neutron mixing, the construction of the most
general energy density that is quadratic in one-body local
densities was presented in detail in Ref.f173g. With the
proton-neutron mixing included, the construction can be per-
formed analogically by including the additional nonzero lo-
cal densities derived in Sec. III. Then the energy density can
be written in the following form:

Hsrd =
"2

2m
t0srd + o

t=0,1
fxtsrd + x̆tsrdg, s39d

where we assumed that the neutron and proton masses are
equal.

Thep-h andp-p interaction energy densities,xtsrd andx̆t,
for t=0 depend quadratically on the isoscalar densities, and
for t=1 on the isovector ones. Based on general rules of
constructing the energy density, Sec. III C, one obtains

x0srd = C0
rr0

2 + C0
Drr0Dr0 + C0

tr0t0 + C0
J0J0

2 + C0
J1J0

2 + C0
J2JI2

0

+ C0
=Jr0 = ·J0 + C0

ss0
2 + C0

Dss0 · Ds0 + C0
Ts0 ·T0

+ C0
j j0

2 + C0
= js0 · s= 3 j0d + C0

=ss= ·s0d2 + C0
Fs0 ·F0,

s40ad

x1srd = C1
rrW2 + C1

DrrW + DrW + C1
trW + tW + C1

J0JW2 + C1
J1JW2 + C1

J2JWI2

+ C1
=JrW + = ·JW + C1

ssW2 + C1
DssW · + DsW + C1

TsW · + TW + C1
j jW2

+ C1
= jsW · + s= 3 jWd + C1

=ss= ·sWd2 + C1
FsW · + FW , s40bd

where3 stands for the vector product, and

x̆0srd = C̆0
sus̆0u2 + C̆0

Ds Ress̆0
* · Ds̆0d + C̆0

T Ress̆0
* · T̆0d + C̆0

j uj̆0u2

+ C̆0
= j Refs̆0

* · s= 3 j̆0dg + C̆0
=su = · s̆0u2

+ C̆0
F Ress̆0

* · F̆0d, s41ad

x̆1srd = C̆1
rur̆W u2 + C̆1

Dr Resr̆W* + Dr̆Wd + C̆1
t Resr̆W* + t̆Wd + C̆1

J0uJ̆Wu2

+ C̆1
J1uJ̆W u2 + C̆1

J2uJ̆WIu2 + C̆1
=J Resr̆W* + = · J̆Wd. s41bd

In Eqs.(40) and (41) squares always denote total lengths in
space and/or isospace, for complex densities taken in the

complex sense, e.g.,uJ̆Wsrdu2=oak J̆ak
* J̆ak. In the p-p energy

density (41) we show only terms in which the products of
real parts are added to products of imaginary parts. Accord-
ing to the rules based on theTC symmetry, Sec. III C, similar
terms with both products subtracted from one another are
also allowed. We do not show them explicitly, because they
have exactly the form of Eq.(41), but without complex con-
jugations and with absolute values replaced by real parts of
products.

When the effective interaction is density dependent all

coupling constants,C’s andC̆’s, may also depend on density.
If this is the case, however, terms that can be transformed
into one another by integration by parts are not anymore
equivalent. Then, five more types of terms may appear in the
energy density, see Ref.[173]; we do not consider such a
possibility in the present study. Note that in thep-h channel
all coupling constants appear in two flavors, fort=0 and 1,
while in thep-p channel each one appears exclusively either
for t=0 or for t=1.

The expression(39) is fairly general. In particular,it is not
based on any particular two-body interaction. However, if
one assumes that the underlying two-body potential is local
and momentum independent, the form of Eq.(39) can be
simplified and the number of coupling constants can be re-
duced. Two particular cases of practical interest are discussed
in the following.

A. Local gauge invariance

Under a local gauge transformation[175], many-body
wave function is multiplied by position-dependent phase fac-
tor

uC8l = expHio
j=1

A

fsr jdJuCl, s42d

which induces the following gauge transformations of den-
sity matricess1ad and s2bd:

r̂8srst, r8s8t8d = eifsrd−ifsr8dr̂srst, r8s8t8d, s43ad

r̂̆8srst, r8s8t8d = eifsrd+ifsr8dr̂̆srst, r8s8t8d. s43bd

The Galilean transformation is a local gauge transformation
for fsrd=p·r, where p is a constant boost momentum. In
analogy to that one can introduce the local momentum field
defined by
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psrd = = fsrd. s44d

Local and momentum-independent interaction is invariant
with respect to local gauge transformation, and hence energy
densities(40) and(41) must then also be independent of the
local gauge. The question whether it is possible to model
nuclear effective interactions in thep-h andp-p channels by
a local and momentum-independent interaction is open.
Therefore, gauge transformation of the energy density can, in
principle, be respected or not, depending on a choice of dy-
namics one makes.

It is easy to tell when the local energy densities(40) and
(41) are local gauge invariant, because properties of local
densities(19)–(25) under gauge transformation read explic-
itly

rk8 = rk, s45ad

tk8 = tk + 2p · jk + p2rk, s45bd

sk8 = sk, s45cd

Tk8 = Tk + 2p ·Jk + p2sk, s45dd

jk8 = jk + prk, s45ed

Fk8 = Fk + pJk + Jk ·p + psp ·skd, s45fd

Jk8 = Jk + p ^ sk, s45gd

wherek=0, 1, 2, 3, and

r̆W8 = e2ifr̆W , s46ad

t̆W8 = e2ifst̆W + ip · = r̆W − p2r̆Wd, s46bd

s̆08 = e2ifs̆0, s46cd

T̆08 = e2iffT̆0 + isp · = ds̆0 − p2s̆0g, s46dd

j̆08 = e2ifj̆0, s46ed

F̆08 = e2ifSF̆0 +
i

2
s= · s̆0dp +

i

2
s= ^ s̆0d ·p − sp · s̆0dpD ,

s46fd

J̆W8 = e2ifJ̆W . s46gd

Since all localp-p densities(46) are multiplied under the
gauge transformation by phase factorse2ifsrd, products of lo-
cal p-p densities are not gauge invariant. Therefore, all terms
not shown explicitly in thep-p energy density[see discus-
sion below Eq.(41)] violate the gauge invariance. On the
other hand, products of complex-conjugatep-p densities and
p-p densities may be gauge invariant. This obviously is the
case for the pairing, spin, current, and spin-currentp-p den-

sities, while only specific combinations of kinetic, spin-
kinetic, and tensor-kinetic densities are gauge invariant.

Complete list of allp-h and p-p gauge-invariant combi-
nations of local densities reads

Gk
tsrd = rktk − jk

2, s47ad

Gk
Tsrd = sk ·Tk − Jk

2 = sk ·Tk −
1

3
Jk

2 −
1

2
Jk

2 − JIk
2, s47bd

Gk
=Jsrd = rk = ·Jk + sk · s= 3 jkd, s47cd

Gk
Fsrd = sk ·Fk −

1

2Soa

JkaaD2
−

1

2o
ab

JkabJkba

= sk ·Fk −
2

3
Jk

2 +
1

4
Jk

2 −
1

2
JIk

2, s47dd

wherek=0, 1, 2, 3, and

Ğ0
Tsrd = Ress̆0

* · T̆0d −
1

4
Ress̆0

* · Ds̆0d, s48ad

ĞF
0srd = Ress̆0

* · F̆0d +
1

4
u = · s̆0u2, s48bd

Ğk
tsrd = Resr̆k

* t̆kd −
1

4
Resr̆k

*Dr̆kd, s48cd

wherek=1, 2, 3. Note that terms of thep-p energy density

that depend on=3 j̆0 and= ·J̆W are not gauge invariant.
Finally, energy density given by Eqs.(40) and (41) is

gauge invariant provided the coupling constants fulfill the
following constraints:

Ct
j = − Ct

t, s49ad

Ct
J0 = −

1

3
Ct

T −
2

3
Ct

F, s49bd

Ct
J1 = −

1

2
Ct

T +
1

4
Ct

F, s49cd

Ct
J2 = − Ct

T −
1

2
Ct

F, s49dd

Ct
= j = + Ct

=J, s49ed

for t=0, 1, and

C̆0
Ds = −

1

4
C̆0

T, s50ad

C̆0
=s = +

1

4
C̆0

F, s50bd
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C̆0
= j = 0, s50cd

C̆1
Dr = −

1

4
C̆1

t , s50dd

C̆1
=J = 0. s50ed

B. Skyrme interaction energy functional

The Skyrme interaction[168,169] is a zero-range local
force that depends on relative momenta up to the second
order. The complete list of terms giving its matrix element in
the position-spin-isospin representation, including the tensor
components[171,176], reads

V̂sr18s18t18r28s28t28, r1s1t1r2s2t2d

= Ht0sd̂s + x0P̂
sd +

1

6
t3sd̂s + x3P̂

sdr0
aF1

2
sr1 + r2dG

+
1

2
t1sd̂s + x1P̂

sdfk̂82 + k̂2g

+
1

2
tefk̂8* · Ŝ · k̂8* + k̂ · Ŝ · k̂g

+ t2sd̂s + x2P̂
sdk̂8* · k̂ + tok̂8* · Ŝ · k̂

+ iW0Ŝ · fk̂8* 3 k̂gJsd̂sd̂t − P̂sP̂tPMdd̂12, s51d

where

d̂s18s28s1s2

s = ds18s1
ds28s2

, s52ad

d̂t18t28t1t2

t = dt18t1
dt28t2

s52bd

and

P̂s18s28s1s2

s =
1

2
sd̂s18s28s1s2

s + ŝs18s1
· ŝs28s2

d = ds18s2
ds28s1

, s53ad

P̂t18t28t1t2

t =
1

2
sd̂t18t28t1t2

t + tŴt18t1
+ tŴt28t2

d = dt18t2
dt28t1

s53bd

are the spin and isospin unity and exchange operators, re-
spectively, and

Ŝs18s28s1s2
= ŝs18s1

ds28s2
+ ŝs28s2

ds18s1
, s54ad

Ŝs18s28s1s2

ab =
3

2
sŝs18s1

a
ŝs28s2

b + ŝs18s1

b
ŝs28s2

a d − dabŝs18s1
· ŝs28s2

s54bd

are two-body vector and tensor spin operators, respectively.
The relative momentum operators

k̂ =
1

2i
s=1 − =2d, s55ad

k̂8 =
1

2i
s=18 − =28d, s55bd

act on thed functions ind̂12,

d̂12sr18r28, r1r2d = dsr18 − r1ddsr28 − r2ddsr1 − r2d

= dsr18 − r2ddsr28 − r1ddsr2 − r1d. s56d

This action has to be understood in the standard sense of
derivatives of distributions.

Whenever the Skyrme interaction(51) is inserted into in-
tegrals, such as in Eqs.(35)–(37), the integration by parts
transfers the derivatives onto appropriate variables in the re-
maining parts of integrands.

NumbersPM are equal to +1 or −1 depending on whether

in a given term the power of momentumk̂ is even or odd,
respectively. Skyrme interaction written in the form of the
integral kernel(51) is explicitly antisymmetric with respect
to exchanging left or right pairs of variables pertaining to
particles 1 and 2.

The Skyrme HFB energy density can be calculated by
inserting the Skyrme interaction(51) directly into expres-
sions(36), (37), and (34). Results for thep-h channel were
published by many authors, see, e.g., Refs.
[169,172,175,177], although often some terms of interaction
(51) were neglected and/or restricted symmetries were used.
Results for thep-p channel were previously published with
tensor terms and the proton-neutron mixing neglected[5].
Here we aim at presenting the complete set of results.

Calculations leading to expressions for the Skyrme energy
density are tedious, but can be efficiently performed by not-
ing two simplifying facts. First, the two-body spin operators
obey conditions

ŜP̂s = Ŝ, s57d

ŜP̂s = Ŝ, s58d

and hence only terms up to linear in spin and isospin Pauli
matrices appear in the antisymmetrized interaction. Second,
the Pauli matrices in Eq.s51d pertain to thep-h coupling
channel, while the momenta to thep-p coupling channel.
Hence, calculations may become very easy once a common,
p-h or p-p, coupling channel is used for all the elements of
interaction. This requires either recoupling momenta to the
p-h channel or recoupling the Pauli matrices to thep-p chan-
nel. To this end, we separately consider thep-h and p-p
energy densities.

1. The p-h channel

In thep-h energy density, indices of the Pauli matrices are
contracted directly with density matrices of particles 1 and 2,
and immediately give nonlocal densities through appropriate
traces in Eqs.(12)–(15). However, the relative momentum

LOCAL DENSITY APPROXIMATION FOR PROTON-… PHYSICAL REVIEW C 69, 014316(2004)

014316-9



operators(55) affect both particles at the same time, and
hence have to be first recoupled to forms where the two
particles are acted upon independently, i.e.,

1

2
sk̂82 + k̂2d =

1

8
sK̂1

2 + K̂2
2 − K̂1 · K̂2 − 4k̂1 · k̂2d

+
1

4
s=1 · =18 + =2 · =28d, s59ad

k̂8* · k̂ =
1

8
sK̂1 · K̂2 − 4k̂1 · k̂2d +

1

4
s=1 · =18 + =2 · =28d,

s59bd

k̂8* 3 k̂ =
1

4
sK̂1 − K̂2d 3 sk̂2 − k̂1d, s59cd

k̂8*
^ k̂8* + k̂ ^ k̂ =

1

4
sK̂1 ^ K̂1 + K̂2 ^ K̂2d −

1

8
sK̂1 ^ K̂2 + K̂2

^ K̂1d −
1

2
sk̂1 ^ k̂2 + k̂2 ^ k̂1d

+
1

4
s=1 ^ =18 + =2 ^ =28d +

1

4
s=18 ^ =1

+ =28 ^ =2d, s59dd

k̂8*
^ k̂ + k̂ ^ k̂8* =

1

8
sK̂1 ^ K̂2 + K̂2 ^ K̂1d −

1

2
sk̂1 ^ k̂2 + k̂2

^ k̂1d +
1

4
s=1 ^ =18 + =2 ^ =28d

+
1

4
s=18 ^ =1 + =28 ^ =2d, s59ed

where

k̂1 =
1

2i
s=1 − =18d, s60ad

k̂2 =
1

2i
s=2 − =28d s60bd

and

K̂1 = − is=1 + =18d, s61ad

K̂2 = − is=2 + =28d. s61bd

Final results can now be easily obtained by noting that rela-
tive momenta(60) lead to the current densities(23a) and
(25a), total momenta(61) lead to derivatives of local densi-
ties, and the scalar and tensor products of individual mo-
menta lead to kinetic densities(20a), (22a), and(24a).

The zero-order(density-dependent) p-h coupling con-
stants of the energy density(40) are expressed by the Skyrme
force parameters as

C0
r =

3

8
t0 +

3

48
t3r0

asrd, s62ad

C0
s =

1

8
t0s2x0 − 1d +

1

48
t3s2x3 − 1dr0

asrd, s62bd

C1
r = −

1

8
t0s2x0 + 1d −

1

48
t3s2x3 + 1dr0

asrd, s62cd

C1
s = −

1

8
t0 −

1

48
t3r0

asrd, s62dd

and the second-order coupling constants are given in Table I.
One can immediately see that the gauge-invariance condi-
tions (49) are fulfilled. This is so because the momentum-
dependent terms of the Skyrme interaction obey the Galilean
invariance[172,175]

Since seven Skyrme force parameters define 24 second-
orderp-h coupling constants, in the resulting Skyrme energy
density there is a high degree of dependency. First, as is well

TABLE I. Second-order coupling constants of thep-h energy
density (40) as functions of parameters of the Skyrme interaction
(51), expressed by the formulaC=sA/192dsat1+bt1x1+ct2+dt2x2

+ete+ fto+gW0d.

A a b c d e f g

C0
Dr 3 −9 0 5 4 0 0 0

C0
t 12 3 0 5 4 0 0 0

C0
J0 −4 −1 2 1 2 10 30 0

C0
J1 −6 −1 2 1 2 −5 −15 0

C0
J2 −12 −1 2 1 2 1 3 0

C0
=J 48 0 0 0 0 0 0 −3

C0
Ds 3 3 −6 1 2 6 −6 0

C0
T 12 −1 2 1 2 −2 −6 0

C0
j −12 3 0 5 4 0 0 0

C0
=s 18 0 0 0 0 3 −3 0

C0
F 72 0 0 0 0 1 3 0

C0
= j 48 0 0 0 0 0 0 −3

C1
Dr 3 3 6 1 2 0 0 0

C1
t 12 −1 −2 1 2 0 0 0

C1
J0 −4 −1 0 1 0 −10 10 0

C1
J1 −6 −1 0 1 0 5 −5 0

C1
J2 −12 −1 0 1 0 −1 1 0

C1
=J 48 0 0 0 0 0 0 −1

C1
Ds 3 3 0 1 0 −6 −2 0

C1
T 12 −1 0 1 0 2 −2 0

C1
j −12 −1 −2 1 2 0 0 0

C1
=s 18 0 0 0 0 −3 −1 0

C1
F 72 0 0 0 0 −1 1 0

C1
= j 48 0 0 0 0 0 0 −1
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known [178], a single spin-orbit parameterW0 determines
all four spin-orbit coupling constantsCt

=J and Ct
= j, for t=0

and 1. Second, four Skyrme parameters,t1, x1, t2, and x2,
uniquely determine four coupling constantsCt

Dr andCt
t, for

t=0 and 1. Third, two tensor Skyrme parameters,te and to,
uniquely determine either isoscalar or isovector coupling
constants,Ct

=s andCt
F. Once such a role of the seven Skyrme

parameters is fixed, values of the remaining coupling con-
stants are also uniquely fixed.

2. The p-p channel

In the p-p energy density, each operator of the relative

momentum,k̂8 and k̂, acts on variables ofthe samedensity
matrix, and thus no recoupling is necessary. Terms of the
interaction that are linear in momenta then lead to current
densities(23b) and (25b), while terms that are quadratic in
momenta lead to derivatives of local densities and to kinetic
densities(20b), (22b), and(24b), because

k̂2 = −
1

4
s=1 + =2d2 + =1 · =2, s63ad

k̂ ^ k̂ = −
1

4
s=1 + =2d ^ s=1 + =2d +

1

2
s=1 ^ =2 + =2 ^ =1d.

s63bd

However, in thep-p energy density, indices of Pauli ma-
trices couple together the two density matrices, and hence do
require recoupling to thep-p channel. These recoupling for-
mulas can be obtained by means of the standard algebra of
angular momentum. A sum of the three Clebsch-Gordan co-
efficients appropriate to the present case reads[179]

4s28s2 o
m1m2

k 1
2s1l1m1u 1

2s18lk 1
2 − s2l2m2u 1

2 − s28l

3kl1 − m1l2 − m2ulml

= o
l8m8,lm

s− 1dl1−l2+l8s2l8 + 1d

3s2l + 1d5
1
2

1
2 l1

1
2

1
2 l2

l8 l l
6 3 k 1

2s28l8m8u 1
2s18lk 1

2s1lmu 1
2s2l

3kl8 − m8l − mulml. s64d

Taking relevant combinations ofl1, l2=0, 1 andl=0, 1, 2,
one obtains

4s28s2d̂s18,−s28−s1,−s2

s =
1

2
ds28s18

ds2s1
+

1

2
ss28s18

* · ss2s1
, s65ad

4s28s2P̂s18,−s28s1,−s2

s = −
1

2
ds28s18

ds2s1
+

1

2
ss28s18

* · ss2s1
, s65bd

4s28s2Ŝs18,−s28s1,−s2
= − iss28s18

*
3 ss2s1

, s65cd

4s28s2Ŝs18,−s28s1,−s2

ab = −
3

2
sss28s18

a*
ss2s1

b + ss28s18
b*

ss2s1

a d

+ dabss28s18
* · ss2s1

, s65dd

and the formulas similar to Eqs.(65a) and(65b) are obtained

for d̂t and P̂t, respectively.
The two zero-order(density-dependent) p-p coupling

constants of the energy density(41) are related to the Skyrme
parameters in the following way:

C̆0
s =

1

8
t0s1 + x0d +

1

48
t3s1 + x3dr0

asrd, s66ad

C̆1
r =

1

8
t0s1 − x0d +

1

48
t3s1 − x3dr0

asrd, s66bd

and the second-orderp-p coupling constants are given in
Table II. Similar to thep-h case, the gauge-invariance con-
ditions (50) are met.

Equivalently, the density-dependent zero-range pairing
force Vpair can be used in thep-p channel[180–183],

Vpairsr, r8d = fpairsrddsr − r8d, s67d

for

fpairsrd = V0H1 + x0P̂
s − Fr0srd

rc
Ga

s1 + x3P̂
sdJ , s68d

whereP̂s is the spin-exchange operators53ad. In such a case,
coupling constantss66d read

C̆0
s =

1

8
V0s1 + x0d −

1

8
V0s1 + x3dFr0srd

rc
Ga

, s69ad

TABLE II. Second-order coupling constants of thep-p energy
density (41) as functions of parameters of the Skyrme interaction

(51), expressed by the formulaC̆=sA/96dsat1+bt1x1+ct2+dt2x2

+ete+ fto+gW0d.

A a b c d e f g

C̆0
Ds −3 1 1 0 0 2 0 0

C̆0
T 12 1 1 0 0 2 0 0

C̆0
j 12 0 0 1 −1 0 0 0

C̆0
=s −18 0 0 0 0 1 0 0

C̆0
F −72 0 0 0 0 1 0 0

C̆0
= j 0 0 0 0 0 0 0 0

C̆1
Dr −3 1 −1 0 0 0 0 0

C̆1
t 12 1 −1 0 0 0 0 0

C̆1
J0 4 0 0 1 1 0 −10 4

C̆1
J1 6 0 0 1 1 0 5 2

C̆1
J2 12 0 0 1 1 0 −1 −2

C̆1
=J 0 0 0 0 0 0 0 0
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C̆1
r =

1

8
V0s1 − x0d −

1

8
V0s1 − x3dFr0srd

rc
Ga

. s69bd

Note that when only the isovector pairing is used, as in most
LDA applications to date, the exchange parametersx0 andx3
are redundant in the definition of the isovector coupling con-

stant C̆1
r, and hence are usually set to 0. However, if one

wants to independently model the isoscalar and isovector
pairing intensity, one has to use nonzero values ofx0 andx3.

For the Gogny interaction[167], the zero-range density-
dependent termt3 with a=1/3 was used in order to enforce
proper saturation properties. The corresponding exchange
parameterx3=1 was used to prevent this zero-range force
from contributing to the isovector pairing channel. However,
such a choice, when applied literally to the proton-neutron
mixing case, might lead to a very strong repulsive isoscalar
pairing interaction.

The term ofx̆ coming from the spin-orbit interaction con-
tains the combination of components of thep-p spin-current

densityJ̆W,

o
ab

sJ̆Waa
* + J̆Wbb − J̆Wab

* + J̆Wbad =
2

3
uJ̆Wu2 +

1

2
uJ̆W u2 − uJ̆WIu2, s70d

that is different from that coming from the tensorto term,

o
ab
SJ̆Wab

* + J̆Wab −
3

2
J̆Waa

* + J̆Wbb −
3

2
J̆Wab

* + J̆WbaD
= −

5

3
uJ̆Wu2 +

5

4
uJ̆W u2 −

1

2
uJ̆WIu2, s71d

and from that coming from the centralt2 term,

uJ̆W u2 = o
ab

sJ̆Wab
* + J̆Wabd =

1

3
uJ̆Wu2 +

1

2
uJ̆W u2 + uJ̆WIu2. s72d

Therefore, by setting appropriate values of thet2s1+x2d, W0,
and to parameters, one can obtain arbitrary values of the

spin-current coupling constantsC̆1
J0, C̆1

J1, andC̆1
J2. Similarly,

parametert2s1−x2d allows for fixing an arbitrary value of the

current coupling constantC̆0
j . On the other hand, parameter

t1s1+x1d defines two isoscalar coupling constants,C̆0
Ds and

C̆0
T, parameterte defines another two isoscalar coupling con-

stants,C̆0
=s and C̆0

F, and parametert1s1−x1d defines two is-

ovector coupling constants,C̆1
Dr andC̆1

t; hence, these pairs of
coupling constants are not independent from one another.
These three pairs of dependencies reflect, in fact, the three
gauge invariance conditionss48d. In this way, seven Skyrme
force parameters determine ten coupling constants in the
p-p channel. Finally, the Skyrme interaction does not give

any nonzero values for the spin-orbit coupling constantsC̆0
= j

and C̆1
=J. Therefore, up to the gauge invariance conditions,

the Skyrme interaction fully determines the energy density in
the p-p channel.

V. THE P-H AND P-P MEAN FIELDS

By varying the energy functional(34) with respect to the
density matrices one obtains thep-h and p-p mean-field
Hamiltonians,

ĥsr8s8t8, rstd =
dHfr̂, r̂̆, r̂̆+g

dr̂srst, r8s8t8d

= −
"2

2m
dsr − r8d = · = ds8sdt8t + Ĝsr8s8t8, rstd

+ Ĝrsr8s8t8, rstd, s73ad

ĥ̆sr8s8t8, rstd =
dHfr̂, r̂̆, r̂̆+g

dr̂̆+srst, r8s8t8d

= Ĝ̆sr8s8t8, rstd + Ĝ̆rsr8s8t8, rstd. s73bd

The rearrangement potentialsĜr and Ĝ̆r result from the den-
sity dependence of effective interactions on thep-h and
p-p densities, respectively. Usually effective interactions are
assumed to depend only on thep-h density matrix(most
often, only on the isoscalar particle densityr0). In that case
thep-p rearrangement potential vanishes. However, one can-
not forget that the dependence of thep-p interaction on the
particle density results in a corresponding contribution to the
p-h rearrangement potential. In what follows, to simplify the
presentation we do not show the rearrangement terms explic-
itly.

Within the LDA, the mean-field Hamiltonians being origi-
nally, such as the Skyrme interaction of Eq.(51), either dis-
tributions or derivatives of distributions can, when acting as
the integral kernels, be expressed as local, momentum-
dependent operators, i.e.,

ĥsr8s8t8, rstd = dsr − r8dĥsr ;s8t8, std, s74ad

ĥ̆sr8s8t8, rstd = dsr − r8dĥ̆sr ;s8t8, std. s74bd

The kinetic energy term in Eq.(73a) is already expressed in
such a form. The mean-fields Hamiltonians are the second-
order operators in momentum and matrices in the spin and
isospin spaces. The isospin structure of the localp-h and
p-p mean-field Hamiltonians reads

ĥsr ;s8t8, std = h0sr ;s8, sddt8t + hWsr ;s8, sd + tŴt8t, s75ad

ĥ̆sr ;s8t8, std = h̆0sr ;s8, sddt8t + h̆Wsr ;s8, sd + tŴt8t, s75bd

respectively. The isoscalar and isovector parts of thep-h
mean-field Hamiltonian can be presented in the compact
form
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hksr ;s8, sd = −
"2

2m
=2ds8sdk0 + Ukds8s + Sk · ŝs8s +

1

2i
fI kds8s

+ sBk · ŝs8sdg · = +
1

2i
= · fI kds8s + sBk · ŝs8sdg

− = · fMkds8s + Ck · ŝs8sg = − = ·Dkŝs8s · =

s76d

for k=0, 1, 2, 3, and where

sB · ŝda = o
b

Babŝ
b s77d

for a=x, y, z is the ath component of a space vector. The
names of symbols are inspired by those introduced in Ref.
f172g. Since thep-h density matrix is Hermitian, thep-h
mean-field Hamiltonian is also Hermitian and, thus, all the
potentials,Mk, Uk, Bk, Ck, Dk, I k, andSk are real.

The general form of the mean-field Hamiltonian(76) can
be constructed from the momentum −i= and spinŝ opera-
tors, based only on the symmetry properties. Apart from the
one-body kinetic energy[the first term in Eq.(76)], the ex-
pansion in momentum gives(i) zero-order terms with scalar
sUkd and pseudovectorsSkd potentials,(ii ) first-order terms
with vector sI kd and pseudotensorsBkd potentials, (iii )
second-order-scalar terms with scalarsMkd and pseudoscalar
sCkd effective masses, and(iv) second-order-tensor terms. In
principle, the most general form of the last category should
involve tensor and third-order-pseudotensor potentials. How-
ever, in Eq.(76) we show only the particular form of it that
corresponds to the energy density(40).

According to Eqs.(73) the p-h mean-field Hamiltonian is
the functional derivative of the energy functional over the
Hermitianp-h density matrix. Functional derivatives of inte-
grals of type

kfrl =E dsr1 − r2dfsr1drsr1, r2dd3r1d
3r2, s78d

where functionf is treated as independent of densities andr
represents ap-h nonlocal density, can easily be calculated
using Eqs.s12d and s14d. Bearing in mind that

dr̂sr1s1t1, r2s2t2d
dr̂srst, r8s8t8d

= dsr1 − rddsr2 − r8dds1sds2s8dt1tdt2t8, s79d

one has

dkfrkl
dr̂srst, r8s8t8d

= dsr8 − rdfsrdds8st̂t8t
k , s80ad

dkfskl
dr̂srst, r8s8t8d

= dsr8 − rdfsrdŝs8st̂t8t
k s80bd

for k=0, 1, 2, 3. The functional derivatives of integrals of
local differential densities are obtained from Eqs.(80)
through integration by parts. Then, the functional derivatives
become dependent on derivatives of the Diracd function and

thus, in accordance with Eqs.(74), again act as local differ-
ential operators. They read

dkf jkl
dr̂srst, r8s8t8d

=
1

2i
dsr8 − rdf= fsrd + fsrd=gds8st̂t8t

k ,

s81ad

dkfJkabl
dr̂srst, r8s8t8d

=
1

2i
dsr8 − rdf=afsrd + fsrd=agŝs8s

b t̂t8t
k ,

s81bd

dkf=a=b8rkl
dr̂srst, r8s8t8d

= − dsr8 − rd=afsrd=bds8st̂t8t
k , s82ad

dkf=a=b8skcl
dr̂srst, r8s8t8d

= − dsr8 − rd=afsrd=bŝs8s
c t̂t8t

k s82bd

for k=0, 1, 2, 3 anda, b, c=x, y, z. Calculations of the func-
tional derivatives over the density matrix are equivalent to
the rules for variations over single-particle wave functions
given by Engelet al. [172]. Using formulas given above,
Eqs. (80)–(82), one obtains the following relations between
the potentials defining thep-h mean field(76) and the local
p-h densities defining the energy density(40),

Uksrd = 2Ct
rrk + 2Ct

DrDrk + Ct
ttk + Ct

=J = ·Jk, s83ad

Sksrd = 2Ct
ssk + 2sCt

Ds − Ct
=sdDsk − 2Ct

=s = 3 s= 3 skd

+ Ct
TTk + Ct

FFk + Ct
= j = 3 jk, s83bd

I ksrd = 2Ct
j jk + Ct

= j = 3 sk, s83cd

Bksrd = 2Ct
J0Jkd − 2Ct

J1e ·Jk + 2Ct
J2JIk + Ct

=Je · = rk,

s83dd

Mksrd = Ct
trk, s83ed

Cksrd = Ct
Tsk, s83fd

Dksrd = Ct
Fsk, s83gd

for k=0, 1, 2, 3. All coupling constantsCt in Eqs. (83) are
taken with t=0 for k=0 (isoscalars) and with t=1 for k
=1, 2, 3 (isovectors). Symbold is the unit space tensor, and
e ·J stands for the antisymmetric space tensor with compo-
nentsse ·Jdab=oc eacbJc, so that, according to Eq.(77), its
action on a vector is obviously the vector productse ·Jd ·ŝ
=J3 ŝ.

The p-p mean-field Hamiltonian has the following iso-
scalar and isovector components:
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h̆0sr ;s8, sd = S̆0 · ŝs8s +
1

2i
h= · Ĭ 0ds8s + Ĭ 0ds8s · =j

− = · fC̆0 · ŝs8sg = − = · D̆0ŝs8s · = ,

s84ad

h̆Wsr ;s8, sd = ŬW srdds8s +
1

2i
h= · fB̆W srd · ŝs8sg + fB̆W srd · ŝs8sg · =j

− = · M̆W ds8s = . s84bd

Contrary to thep-h Hamiltonian (76), the p-p Hamiltonian

(84) can be non-Hermitian, because potentialsC̆0, D̆0, Ĭ 0, S̆0,

M̆W , ŬW , andB̆W are, in general, complex quantities. This is so,
because thep-p density matrix is, in general, not Hermitian.
Therefore, the energy functional should be treated as a func-
tional of both r̂̆ and r̂̆+.

The p-p mean-field Hamiltonian is the functional deriva-
tive of the energy functional overr̂̆+, whereas the Hermitian
conjugate Hamiltonian is the functional derivative overr̂̆.
The p-p densities are, according to Eqs.(13) and(15), func-
tions of r̂̆, while the complex-conjugate densities are func-
tions of r̂̆+.

When calculating thep-p functional derivatives, one can-
not forget that thep-p density matrix fulfills symmetry con-
dition (6b), implying that thep-p densities are either sym-
metric or antisymmetric functions, Eqs.(18). Therefore, the
calculation of functional derivatives over eitherr̂̆ or r̂̆+ is
similar to that leading to Eqs.(80)–(82), however, instead of
Eq. (79) one has

dr̂̆+sr1s1t1, r2s2t2d

dr̂̆+srst, r8s8t8d
= dsr1 − rddsr2 − r8dds1sds2s8dt1tdt2t8

− 16ss8tt8dsr1 − r8d

3dsr2 − rdds1−s8ds2−sdt1−t8dt2−t. s85d

In the expressions for functional derivatives, this gives either
cancellation or addition of terms coming from the two com-
ponents of the right-hand side of Eq.s85d. Finally, the non-
vanishing derivatives are

dkf r̆W*l

dr̂̆+srst, r8s8t8d
= 2dsr8 − rdfsrdds8stŴt8t, s86ad

dkf s̆0
*l

dr̂̆+srst, r8s8t8d
= 2dsr8 − rdfsrdŝs8st̂t8t

0 , s86bd

dkf j̆0
*l

dr̂̆+srst, r8s8t8d
= − idsr8 − rdf= fsrd + fsrd=gds8st̂t8t

0 ,

s87ad

dkf J̆Wab
* l

dr̂̆+srst, r8s8t8d
= − idsr8 − rdf=afsrd + fsrd=agŝs8s

b tŴt8t,

s87bd

dkf=a=b8r̆W
*l

dr̂̆+srst, r8s8t8d
= − 2dsr8 − rd=afsrd=bds8stŴt8t, s88ad

dkf=a=b8s̆0c
* l

dr̂̆+srst, r8s8t8d
= − 2dsr8 − rd=afsrd=bŝs8s

c t̂t8t
0 s88bd

for a, b, c=x, y, z.
Using Eqs.(86) and (87) one obtains the following rela-

tions between the potentials defining thep-p mean-field
Hamiltonian (84) and the localp-p densities defining the
energy density(41):

S̆0srd = 2C̆0
ss̆0 + 2sC̆0

Ds − C̆0
=sdDs̆0 − 2C̆0

=s = 3 s= 3 s̆0d

+ C̆0
TT̆0 + C̆0

FF̆0 + C̆0
= j = 3 j̆0, s89ad

Ĭ 0srd = 2C̆0
j j̆0 + C̆0

= j = 3 s̆0, s89bd

C̆0srd = C̆0
Ts̆0, s89cd

D̆0srd = C̆0
Fs̆0, s89dd

ŬW srd = 2C̆1
rr̆W + 2C̆1

DrDr̆W + C̆1
tt̆W + C̆1

=J = · J̆Wk, s89ed

B̆W srd = 2C̆1
J0J̆Wd − 2C̆1

J1e · J̆W + 2C̆1
J2J̆WI + C̆1

=Je · = r̆W , s89fd

M̆W srd = C̆1
tr̆W . s89gd

In the case of the zero-range pairing force(67), the isovector
p-p potential is proportional to thep-p isovector density
while the isoscalar field has a very different structure, i.e., it
is proportional to the scalar product of spinŝ and thep-p
spin densitys̆0. This immediately suggests that there exists a
connection between the isoscalar pairing and thep-p spin
saturation, which is influenced by the spin-orbit splitting. In
this context, let us remind the shell-model study[20] which
discusses the relation between the magnitude of theT=0
pairing and the spin-orbit splitting.

VI. THE HFB EQUATIONS

Minimization of the energy functional of Eq.(34) with
respect to thep-h andp-p density matrices, which fulfill Eqs.
(7) under auxiliary conditions
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E d3rrnsrd = N, s90ad

E d3rrpsrd = Z, s90bd

leads to the HFB equation of the form

fĤ̆, R̂̆g = 0. s91d

The generalized density matrixR̂̆ is given by Eq.s9d and the
generalized mean-field Hamiltonian is defined as

Ĥ̆ = ŴĤŴ+ = 1ĥ − l̂ ĥ̆

ĥ̆+ − ĥTC + l̂2 , s92d

with the Lagrange multiplier given by

l̂ =
1

2
sln + lpd +

1

2
sln − lpdt̂3, s93d

where ln and lp are the neutron and proton Fermi levels,
respectively.

The usual method of solving the HFB equation(91) is to
solve in a self-consistent way the eigenvalue problem,

Ĥ̆sx8, xd • Fsx;Ed = EFsx8;Ed, s94d

for the generalized mean-field Hamiltonian, and then to con-
struct the generalized density matrix,

R̂̆sx, x8d = o
EPE

Fsx;EdF+sx8;Ed, s95d

as a projection operator onto the set of the quasiholesoccu-
piedd statesF belonging to a subset of energy spectrum,E.
For a local mean-field Hamiltonian, Eq.s94d is a system of
eight second-order differential equations, in general with
complex coefficients. Usual four dimensions corresponding
to upper and lower HFB components and to two spin projec-
tions are here multiplied by another factor of 2 due to the
isospin projections. Altogether, Eq.s94d corresponds to a
system of 16 equations within the domain of real numbers.
When specific symmetry conditions are imposed on solu-
tions, this number can be reduced in a standard way, see Ref.
f184g for the analysis pertaining to spherical symmetry.

The energy spectrum of generalized mean-field Hamil-
tonian has been discussed in Ref.[5]. The only difference
with the present case is that here the eigenvalue problems for
neutrons and protons in Eq.(94) cannot be separated. It is

well known that the eigenvalues ofĤ̆ appear in pairs of
opposite signs. For each quasihole state of energyE,

Fsrst;Ed = Swsrst;Ed
csrst;Ed

D , s96d

there exists a quasiparticle state

Fsrst;− Ed = 4stSc*sr − s− t;Ed
w*sr − s− t;Ed

D s97d

belonging to energy −E. In the case of the absence of exter-
nal fields, bound statesswhen w and c are both localizedd
exist only when both Fermi levels,ln and lp, are negative.
Discrete quasihole energy levels lie within the range
L,E,−L, where L=maxsln, lpd,0. The ground-state
solution corresponds to occupying states having negative
energies; then the setE consists of a number of discrete
levels lying inside segmentsL, 0d and the continuous
spectrum with −̀ ,E,L.

Traditionally, one solves Eq.(94) for the quasiparticle
states of positive energies rather than for the negative ones.
Then, the discrete spectrum is within the segment 0,E
,−L and energiesE.−L belong to the continuum. Having
found the wave functionsFsrst;Ed for E.0 one uses Eq.
(97) to construct the density matrix, i.e.,

R̂̆sx, x8d = o
E.0

Fsx;− EdF+sx8;− Ed. s98d

The p-h andp-p density matrices are then expressed as

r̂srst, r8s8t8d = 16ss8tt8 o
E.0

c*sr − s− t;Edcsr8 − s8 − t8;Ed,

s99ad

r̂̆srst, r8s8t8d = 16ss8tt8 o
E.0

c*sr − s− t;Edwsr8 − s− t8;Ed.

s99bd

VII. CONSERVED SYMMETRIES

Conserved and broken symmetries are one of the most
important elements of description of many-body systems.
Within the mean-field approach, the theorem about self-
consistent symmetries[167] tells us that mean-field states
may or may not have all the symmetries of the Hamiltonian,
depending on interactions and the system studied. Within the
HFB approach, the symmetry is conserved when the gener-

alized density matrixR̂ and the generalized HamiltonianĤ
both commute with the symmetry operatorÛ, i.e., fR̂, Ûg
=0 andfĤ, Ûg=0 or

ÛR̂Û+ = R̂, s100ad

ÛĤÛ+ = Ĥ, s100bd

where

Û = SÛ 0

0 Û*
D , s101d

and Û is a unitary matrix of the single-particle symmetry
operator. For the breve representation used in the present
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study, the symmetry operator is givend by fcf. Eq. s9dg

Û̆ = ŴÛŴ+ = SÛ 0

0 ÛTC
D , s102d

and then

Û̆R̂̆Û̆+ = R̂̆, s103ad

Û̆Ĥ̆Û̆+ = Ĥ̆. s103bd

In the previous sections we have presented the most general
set of expressions pertaining to the situation when no sym-
metries werea priori conserved. Below we discuss conse-
quences of conserved symmetries.

A. Proton-neutron symmetry

The standard case of no proton-neutron mixing can be
described by the conserved proton-neutron symmetry given
by

Ûpn = i exp s− ipT̂3d = i expS−
i

2
pt̂3D = t̂3. s104d

In other words, the iso-3 signaturesmultiplied by id is then
the conserved symmetry. Note that conservation of projec-
tion of the isospin on the third axissthe charge conservationd
would require that the iso-3 rotation about an arbitrary angle
be conserved, while the iso-3 signature corresponds only to
rotation aboutp. Within the HFB approach, the charge sym-
metry is broken in the same way as is the particle number
symmetry.

Since theTC-transformed symmetry operator readsÛpn
TC

=−t̂3, we obtain from Eq.(103a) that

t̂3r̂t̂3 = r̂, s105ad

t̂3r̂̆t̂3 = − r̂̆, s105bd

and analogous properties hold for the mean-field Hamilto-

nians,ĥ and ĥ̆, respectively. It is then clear that without the
proton-neutron mixing thep-h density matrices and Hamil-
tonians have only thek=0 and 3 isospin components, while
the p-p ones have(in the breve representation) only the k
=1 and 2 isospin components, cf. Eqs.(29) and (30).

B. Time-reversal symmetry

In the case of time-reversal invariance,r̂T= r̂ and r̂̆T= r̂̆,
see Eqs.(4), thep-h andp-p densities fulfill additional con-
ditions

r0sr, r8d = r0
*sr, r8d, s106ad

rksr, r8d = − s− 1dkrk
*sr, r8d, s106bd

s0sr, r8d = − s0
*sr, r8d, s106cd

sksr, r8d = s− 1dksk
*sr, r8d s106dd

and

r̆0sr, r8d = r̆0
*sr, r8d, s107ad

r̆ksr, r8d = − s− 1dkr̆k
*sr, r8d, s107bd

s̆0sr, r8d = − s̆0
*sr, r8d, s107cd

s̆ksr, r8d = s− 1dks̆k
*sr, r8d, s107dd

wherek=1, 2, 3. Due to the fact that thek=2 Pauli matrixt̂2

is imaginary, the time reversal acts differently on thek=2
isovector components than on thek=1, 3 components of all
isovector densities. At the first sight, this seems to be a bi-
zarre property. Indeed, the isospin quantum number is intro-
duced to take into account the fact that there are two kinds of
nucleons in nature, and each kind has its own, apparently
unrelated to one another, time-reversal operation.

However, the use of the standard isospin formalism im-
plies something more, namely, the neutron wave function
(isospin up) can be obtained from the proton wave function
(isospin down) by an action of the(real) t̂1 Pauli matrix.
Therefore, the relative phases of the neutron and proton wave
functions are fixed by the phase convention that has been
used to choose the isospin Pauli matrices. As a consequence,
the time-reversal properties of neutrons and protons are not
any more independent from one another. Of course, this is
not a spurious quirk of the mathematics we use, but a reflec-
tion of a deeper fact that by mixing the neutron and proton
wave functions we introduce complex mixing coefficients
that do affect the time-reversal properties of the mixed wave
function. Conservation of the time reversal means that these
mixing coefficients must follow rules dictated by the time
reversal, which implies differences between thek=2 andk
=1, 3 isodirections. Therefore, we see here that from basic
arguments it follows that conservation of the time reversal
must imply the isospin symmetry breaking. The only isorota-
tions that are compatible with the time reversal are those
about thek=2 isoaxis.(The influence of the time-odd fields
on the magnitude of the Wigner energy was pointed out in
Ref. [12].)
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Table III summarizes properties ofp-h and p-p densities
under the exchange of their spatial arguments. When no con-
served symmetry is imposed, all densities are complex, and
their real and imaginary parts are either symmetric or anti-
symmetric. For conserved time reversal, all densities become
either real or imaginary and are either symmetric or antisym-
metric. Recall that symmetric parts contribute only to par-
ticle, kinetic, spin, spin-kinetic, and tensor-kinetic local den-
sities, while the antisymmetric parts contribute only to the
current and spin-current local densities. Therefore, local den-
sities are complex, real, imaginary, or vanishing, depending
on whether time-reversal, proton-neutron, or both symme-
tries are conserved. Table IV presents these properties for all
local p-h andp-p densities.

In previous studies, e.g., in Refs.[3,62,65,152,153], the
T=1 pairing fields were associated with the real part of the
pairing tensor, while theT=0 pairing was represented by the
imaginary part of the pairing tensor. Such a structure was

obtained for specific phase conventions and symmetries. On
the other hand, as shown in Table IV, the general case cor-
responding to no conserved symmetries(e.g., for rotating
states) requires that all thepn densities be complex.

To summarize this section, we now enumerate all nonzero
densities when the time reversal is conserved or not, and/or
the proton-neutron mixing is present or not. By counting as
one density each component of a vector, tensor, or isovector,
we obtain the following four options.

(i) 1° time-reversal broken plus proton-neutron mixing.
(a) 23 realp-h isoscalar densities:r0srd, t0srd, J0srd,

s0srd, T0srd, j0srd, andF0srd.
(b) 69 real p-h isovector densities:rWsrd, tWsrd, JWsrd,

sWsrd, TW srd, jWsrd, andFW srd.
(c) 12 complexp-p isoscalar densities:s̆0srd, T̆0srd,

j̆0srd, andF̆0srd.

TABLE III. Symmetries of thep-h (left) andp-p (right) densities in general case(no conserved symme-
tries imposed), and in case of the time-reversal symmetry conserved. Real(Re) and imaginary(Im) parts are
symmetric(S) or antisymmetric(A) under exchange of their spatial arguments, as indicated in the table.

General Time reversal General Time reversal

Density Re Im Re Im Density Re Im Re Im

r0sr, r8d S A S 0 r̆0sr, r8d A A A 0

r2sr, r8d S A 0 A r̆2sr, r8d S S 0 S

r1,3sr, r8d S A S 0 r̆1,3sr, r8d S S S 0

s0sr, r8d S A 0 A s̆0sr, r8d S S 0 S

s2sr, r8d S A S 0 s̆2sr, r8d A A A 0

s1,3sr, r8d S A 0 A s̆1,3sr, r8d A A 0 A

TABLE IV. Properties of the localp-h and p-p densities in general case(no conserved symmetries
imposed), and in case of the time-reversal, proton-neutron, or both symmetries conserved. Thek=0, 1, 2, or
3 isospin components of densities are complex(C), real (R), imaginary(I), or zero(0), as indicated in the
table.

General Time reversal Proton neutron Both

k 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

rk R R R R R R 0 R R 0 0 R R 0 0 R

tk R R R R R R 0 R R 0 0 R R 0 0 R

Jk R R R R R R 0 R R 0 0 R R 0 0 R

sk R R R R 0 0 R 0 R 0 0 R 0 0 0 0

Tk R R R R 0 0 R 0 R 0 0 R 0 0 0 0

jk R R R R 0 0 R 0 R 0 0 R 0 0 0 0

Fk R R R R 0 0 R 0 R 0 0 R 0 0 0 0

r̆k 0 C C C 0 R I R 0 C C 0 0 R I 0

t̆k 0 C C C 0 R I R 0 C C 0 0 R I 0

J̆k
0 C C C 0 R I R 0 C C 0 0 R I 0

s̆k C 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0

T̆k
C 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0

j̆k C 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0

F̆k
C 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0
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(d) 33 complexp-p isovector densities:r̆Wsrd, t̆Wsrd,

and J̆Wsrd.
(ii ) 2° time-reversal conserved plus proton-neutron mix-

ing.
(a) 11 real p-h isoscalar densities:r0srd, t0srd, and

J0srd.
(b) 30 real p-h isovector densities:r1,3srd, t1,3srd,

J1,3srd, s2srd, T2srd, j2srd, andJ2srd.
(c) 12 imaginaryp-p isoscalar densities:s̆0srd, T̆0srd,

j̆0srd, andF̆0srd.
(d) 33 p-p isovector densities, 22 realr̆1,3srd, t̆1,3srd,

J̆1,3srd and 11 imaginaryr̆2srd, t̆2srd, J̆2srd.
(iii ) 3° time-reversal broken, no proton-neutron mixing.

(a) 23 realp-h isoscalar densities:r0srd, t0srd, J0srd,
s0srd, T0srd, j0srd, andF0srd.

(b) 23 realp-h isovector densities:r3srd, t3srd, J3srd,
s3srd, T3srd, j3srd, andF3srd.

(c) 22 complex p-p isovector densities:r̆1,2srd,
t̆1,2srd, and J̆1,2srd.

(iv) 4° time-reversal conserved, no proton-neutron mix-
ing.

(a) 11 real p-h isoscalar densities:r0srd, t0srd, and
J0srd.

(b) 11 real p-h isovector densities:r3srd, t3srd, and
J3srd.

(c) 22 p-p isovector densities, 11 realr̆1srd, t̆1srd,
J̆1srd and 11 imaginaryr̆2srd, t̆2srd, J̆2srd.

VIII. CONCLUSIONS

Experimental studies of the heavyN,Z nuclei have
sparked renewed interest in physics ofpn correlations, espe-
cially pn pairing. While the appearance of theT=1 pn pair-
ing is a simple consequence of the charge invariance, in spite
of vigorous research, no hard evidence for the elusiveT=0
pairing phase has yet been found. There are conflicting mes-
sages coming from calculations based on the quasiparticle

approach. In some models, theT=0 andT=1 pairing modes
are mutually exclusive, while in others they are not. What is
clear, however, that predictions of calculations that impose
some symmetry constraints(which can rule out the presence
of some pairing fields) should be taken with the grain of salt.

In this work, we propose the most general nuclear energy-
density functional which is quadratic in isoscalar and isovec-
tor densities. To this end, we discuss the isospin structure of
the density matrices and self-consistent mean fields that ap-
pear in the coordinate-space HFB theory allowing for a mi-
croscopic description of pairing correlations in all isospin
channels. The resulting expressions incorporate an arbitrary
mixing between protons and neutrons. No particular self-
consistent symmetries of the energy-density functional have
been imposed, however, the consequences of the time-
reversal and proton-neutron symmetry are discussed. The ob-
tained nuclear energy-density functional(39)–(41) does not
have to be related to any given local potential. However, if
the underlying potential is local and velocity independent,
the potential energy density is invariant with respect to a
local gauge transformation. The resulting densities appear in
certain gauge-invariant combinations(47) and (48) which
lead to a significant simplification of the functional.

The self-consistent wave functions obtained by solving
the generalized HFB equations are not eigenstates of isospin.
This is a serious drawback of the quasiparticle approach. To
cure this problem, isospin should be restored by means of,
e.g., projection techniques. While this can be carried out in a
straightforward manner for energy functionals that are re-
lated to a two-body potential, the restoration of spontane-
ously broken symmetries of a general density functional
poses a conceptional dilemma[185–188] and a serious chal-
lenge that is left for the future work.
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