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Abstract. Recent theoretical advances in the large-scale HFBTHO calculations of nuclear ground-state
properties are presented with the emphasis on the exact particle number projection. The applicability of
the widely used Lipkin-Nogami procedure is discussed together with the analysis of the particle number
projection after variation.
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1 Introduction

Modern nuclear structure theory is rapidly expanding from
the description of phenomena in stable nuclei toward re-
gions of exotic short-lived nuclei far from stability. Strin-
gent constraints on the microscopic approach to nuclear
dynamics, effective nuclear interactions, and nuclear en-
ergy density functionals are obtained from studies of the
structure and stability of exotic nuclei with extreme isospin
values, as well as extended asymmetric nucleonic matter.

The Hartree-Fock-Bogoliubov (HFB) method is a re-
liable tool for a microscopic self-consistent description of
nuclei, which can be used in the context of the density
functional theory (DFT). We solve the HFB equations by
using the Transformed Harmonic Oscillator (THO) ba-
sis [1], which allows for a correct asymptotic behavior of
single-quasiparticle wave functions. The method is adopted
for performing massive calculations for many axially de-
formed nuclei including those which are weakly bound [2].

Recently, it has been shown [3] that the total energy
in the particle-number-projected (PNP) HFB approach
can be expressed as a functional of the unprojected HFB
density matrix and pairing tensor. Its variation leads to
a set of HFB-like equations with modified Hartree-Fock
fields and pairing potentials. The method has been illus-
trated within schematic models [3], and also implemented
in HFB calculations with the finite-range Gogny force [4].
In the present paper, we adopt it for the Skyrme function-
als and zero-range pairing term; in this case the building
blocks of the method are the local densities and mean
fields. The HFB results using the Lipkin-Nogami (LN) ap-
proximation, followed by the particle-number projection

after variation (PLN), are compared to the HFB results
with projection before variation (PNP).

2 Particle-Number-Projected Skyrme-HFB
Method

The particle-number-projected HFB state can be written
as:

|Ψ〉 ≡ PN |Φ〉 =
1
2π

∫ 2π

0

dφ eıφ(N̂−N)|Φ〉, (1)

where N̂ is the number operator, N is the particle number,
and |Φ〉 is the HFB wavefunction which does not have a
well-defined particle number. As shown in Ref. [3], the
PNP HFB energy

EN [ρ, ρ̄] =

〈
Φ|HPN |Φ〉

〈Φ|PN |Φ〉 =
∫

dφ〈Φ|Heiφ(N̂−N)|Φ〉∫
dφ〈Φ|eiφ(N̂−N)|Φ〉 , (2)

is an energy functional of the unprojected particle-hole
and pairing densities ρ and ρ̄, respectively. In the case of
the Skyrme force, the projected energy (2) reads:

EN [ρ, ρ̃] =
∫

dφ y(φ)
∫

dr
(
H(r, φ) + H̃(r, φ)

)
, (3)

where

x(φ) = 1
2π

e−iφN det(eiφI)√
det C(φ)

, y(φ) = x(φ)∫
dφ′ x(φ′)

, (4)

I is the unit matrix, and the gauge-angle-dependent en-
ergy densities H(r, φ) and H̃(r, φ) are derived from the
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unprojected ones by simply replacing particle (pairing) lo-
cal densities by their gauge-angle-dependent counterparts.
The latter ones are defined by the gauge-angle-dependent
density matrices.

Obviously, the projected energy (3) is a functional of
the unprojected density matrices. Its derivatives with re-
spect to ρn′n and ρ̃n′n lead to the PNP Skyrme-HFB equa-
tions (

hN h̃N

h̃N −hN

)(
U
V

)
= EN

(
U
V

)
, (5)

where

hN =
∫

dφy(φ)
[
Y (φ)E(φ) + e−2iφC(φ)h(φ)C(φ)

]

− [
∫

dφy(φ)ie−iφsin(φ)ρ̃(φ)h̃(φ)C(φ) + h.c.] ,

h̃N = 1
2

∫
dφy(φ)e−iφ{h̃(φ)C(φ) + (h̃(φ)C(φ))T },

(6)

and Y (φ) = ie−iφ sin φC(φ)− i
∫

dφ′y(φ′)e−iφ′ sin φ′C(φ′)
and C(φ) = e2iφ

(
1 + ρ(e2iφ − 1)

)−1. The gauge-angle-
dependent field matrices h(φ) and h̃(φ) are obtained by
simply replacing the particle and pairing local densities in
the unprojected fields with their gauge-angle-dependent
counterparts.

3 Results

Figure 1 shows the PNP results for the complete chain of
the calcium isotopes (from the proton drip to the neutron
drip line), calculated with the SLy4 Skyrme functional and
mixed delta pairing [1]. Comparison is also made with the
LN and PLN results. One can conclude that the PLN ap-
proximation works best for open-shell nuclei, where the
total energy differences between various variants of cal-
culations are less than 250 keV. For closed-shell nuclei
[5], however, the energy differences increase to more than
1MeV. In such cases, one can improve the PLN results by
applying the projection to the LN solutions obtained for
the neighboring nuclei [6], as illustrated in the top panel
of Fig. 1.

In summary, the Skyrme HFBTHO PNP framework
has been implemented and tested. The particle-number
corrections maximize for magic nuclei where the static
pairing breaks down. It is to be noted that conceptual
questions related to the notion of symmetry restoration
in DFT still remain; those will be discussed in the follow-
ing work [7].
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Fig. 1. The LN and PLN (projection after variation) and PNP
HFB (projection before variation) results obtained for the SLy4
force and mixed delta pairing. Arrows in the top panel indicate
projection results from the neighboring nuclei.
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