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Abstract. The Green’s function oscillator expansion method and the generalized Strutinsky smoothing
procedure are applied to shell corrections in the heaviest elements. A macroscopic-microscopic method
with a finite deformed Woods-Saxon potential is used. The stability condition for the shell correction is
discussed in detail and the parameters defining the smoothing procedure are carefully determined. It is
demonstrated that the spurious contribution to the total binding energy due to the unphysical particle gas
that appears in the standard method can be as large as 1.5MeV for weakly bound neutron-rich superheavy
nuclei, but the effect on energy differences (e.g., alpha-decay values) is fairly small.
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1 Introduction

The interest in superheavy nuclei has been invigorated
during the last years, thanks to the experimental progress
in the synthesis of new elements leading to their chemical
and nuclear studies, and the theoretical progress in their
modeling [1–7]. The stability of the heaviest nuclei with
Z > 104 is primarily determined by the shell effects [8,9].
Indeed, if the heaviest nuclei were described by the macro-
scopic liquid-drop model, they would fission immediately
from their ground states due to the huge Coulomb re-
pulsion. It is only due to strong shell stabilization effects
that long-lived superheavy elements (SHE) with very large
atomic numbers can exist. However, the exact location of
regions of enhanced shell stability in nuclei beyond 208Pb
is still a matter of theoretical debate [10,11]. It has been
recently suggested, for instance, that the regions of en-
hanced shell effects in SHE are fairly broad, i.e., they do
not concentrate around well-defined magic numbers [12].

Nowadays, self-consistent theoretical treatment of
SHE has become a standard. Unfortunately, for the time
being, there is a considerable spread in predictions of
self-consistent approaches based on non-relativistic and
relativistic energy density functionals for the structure of
SHE (ground-state properties, binding energy differences,
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fission barriers) [13]. The main problem is the uncertainty
in the energy functional when extrapolating in mass
and charge towards the center of the superheavy region.
While a reasonable description of ground-state properties
of SHE can be obtained within modern effective forces,
it is very difficult to obtain simultaneously a quantitative
agreement for fission barriers and fission isomers [14].
For these reasons, a macroscopic-microscopic approach
based on the Strutinsky shell-correction method [15–17]
still remains a useful tool when making quantitative
predictions for various properties of the heaviest and
superheavy nuclei [18–20].

Calculations of shell corrections, based on the single-
particle energy averaging, require the knowledge of the
level density, which, for the finite-depth potentials, con-
tains a contribution from the particle continuum. (Re-
cently, prescriptions based on averaging in the nucleon
number space, based on bound states only, have been
introduced [21]. It is not clear, however, whether these
methods can be applied to drip-line nuclei.) Consequently,
appropriate treatment of the positive-energy spectrum of
the average single-particle potential is very important, es-
pecially for weakly bound nuclei with Fermi levels lying
close to zero [22–26]. The contribution from the unbound
spectrum can be explicitly taken into account by calcu-
lating the continuum part of the level density from the
energy derivative of the scattering shift. The contribution
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from the non-resonant background can then be obtained
by means of the contour integration along a path in the
complex energy plane [23,24]. Another approach, based on
the Green’s function method, was proposed in ref. [25] and
subsequently used in refs. [26,11]. It takes into account,
in a simple way, the effect of the one-body continuum by
eliminating the spurious contributions to the level density
coming from the free-gas states. This method has been
used in the present paper.

Our paper is organized as follows. Section 2 contains a
brief description of the Green’s function approach to the
Strutinsky smoothing procedure. In sect. 3 we present our
implementation of the generalized Strutinsky method and
discuss the choice of parameters describing the smoothed
level density. Shell corrections and ground-state energies
of even-even nuclei with 92 ≤ Z ≤ 126 and 132 ≤ N ≤ 188
obtained in the framework of both the modified and stan-
dard smoothing method are discussed in sect. 4, which
also contains the conclusions of this work.

2 Green’s function shell correction method

In the macroscopic-microscopic approach based on the
standard Strutinsky prescription [15], the shell correction
is expressed by

δEshell = Es.p. − Ẽs.p., (1)

where Es.p. denotes the total single-particle energy, while

Ẽs.p. is the smooth component of Es.p.. Calculation of the
single-particle sum requires the knowledge of the level den-
sity g(e) of the single-particle states ei:

g(e) =
∑

i=occ

2δ(e− ei), (2)

while in the definition of Ẽs.p.,

Ẽs.p. =

λ̃
∫

−∞

eg̃(e)de, (3)

one uses the mean value g̃(e) obtained from g(e) by means
of the Strutinsky smoothing.

The above procedure is justified only for well-bound
nuclei that are close to the β-stability line. For nuclei
whose Fermi levels are close to zero, the standard method
leads to distorted values of Ẽs.p., and an appropriate
consideration of the positive-energy spectrum is neces-
sary [23,24]. A simple and elegant approach dealing with
this problem was suggested in ref. [25]. Namely, in the
case of a finite potential, the single-particle level density
can be expressed through the Green’s operator Ĝ+(z) =

(z − Ĥ + i0)−1:

g(e) = −
1

π
=

{

Tr
[

Ĝ+(e)− Ĝ+
0 (e)

]}

, (4)
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Fig. 1. Dependence of the spherical proton shell correction
on Ncut in a superheavy nucleus 310126184. The Ncut lowest
harmonic-oscillator states having principal quantum numbers
less than or equal to Nosc = 37 were taken in the basis. The
Green’s function method was used.

where Ĝ+
0 (e) is the free outgoing Green’s operator associ-

ated with the kinetic energy Ĥ0 = T̂ only. (For the pro-
tons, the Coulomb potential is also included [26].) By di-

agonalizing Ĥ and Ĥ0 in the sameM -dimensional, square-
integrable, orthonormal basis, one can approximate eq. (4)
by a simple difference:

gM (e) =

M
∑

i=1

2δ(e− ei)−

M
∑

i=1

2δ(e− e0i ), (5)

where ei and e
0
i denote eigenvalues of H and H0, respec-

tively. In the next step, the Strutinsky smoothing pro-
cedure is applied to gM (e), yielding the smoothed level
density g̃M (e):

g̃M (e) =
1

γ

∞
∫

−∞

gM (e′)f

(

e′ − e

γ

)

de′. (6)

The smoothing is done by folding gM (e) with a smooth-
ing function f(z), which is usually taken as a product of
a Gaussian weighting function and a curvature correction
polynomial (an associated Laguerre polynomial of the or-
der p/2, where p is an even number). The smoothing width
γ should be greater than the mean distance between neigh-
boring major oscillator shells h̄ω0 = 41/A1/3 MeV. The
approximated smoothed level density g̃M (e) achieves the
exact value g̃(e) for large values of M [25].

The total binding energy Etot of the nucleus is ob-
tained by adding neutron and proton shell corrections (as
well as the pairing correction) to the macroscopic energy
Emacr. In this work, instead of the total energy, we discuss
the deformation-renormalized energy Eren, which is the
difference between the total energy of a deformed nucleus,
Etot(def), and the macroscopic energy of the spherical nu-
cleus Emacr(0):

Eren(def) = Etot(def)− Emacr(0). (7)
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Fig. 2. Neutron shell correction for 262Sg156 as a function of Ncut and the oscillator parameter η. The calculations were
performed at the deformed ground-state minimum (left) and at the spherical saddle point (right). The standard shell-correction
method with Nosc = 31 was used. The difference between contour lines is 200 keV.

In the following, we follow the convention of ref. [26], i.e.,
the results obtained in the framework of the Green’s func-
tion approach are referred to as “new”, while those called
“old” are obtained using the standard averaging method
based on the discretized positive-energy levels.

3 Parameters of the smoothing procedure

The calculations presented in this work are based on the
axially deformed Woods-Saxon (WS) model of ref. [27],
which has been extensively used [28–30,10] in studies of
the heaviest and superheavy nuclei. All details pertain-
ing to the macroscopic-microscopic binding energy expres-
sion (e.g., the choice of the WS parameters, strength of
the monopole pairing interaction, parametrization of the
macroscopic energy term) strictly follow ref. [10]. The WS
Hamiltonian was diagonalized in the deformed harmonic-
oscillator basis. The ground state of an even-even nu-
cleus was obtained by minimizing the total macroscopic-
microscopic energy with respect to axial deformation pa-
rameters β2, β4, β6, and β8.

As discussed in ref. [26], there are several parameters
that are crucial for the determination of shell correction.
The most important are: the size of the single-particle ba-
sis (given by the number of deformed oscillator states used,
Ncut, and by the maximum principal oscillator number
Nosc allowed), the oscillator frequency parameter η (h̄ω =
ηh̄ω0), and the Strutinsky smoothing parameters p and γ.

In ref. [26], the deformed WS Hamiltonian was di-
agonalized in Nosc = 30 stretched oscillator shells with
η = 1.2. It was shown that for weakly bound and de-
formed nuclei this rather large value of Nosc was necessary
to reach the convergence of the total single-particle energy
Es.p.. On the other hand, if the number of basis states is
large, the standard Strutinsky method collapses because
of the unphysical increase of gas states around the one-
body threshold. Consequently, the parameters Nosc and
Ncut are usually assigned much lower values in the stan-
dard method as compared to the Green’s function method.

Figure 1 shows the proton shell correction for the spher-
ical superheavy nucleus 310126184 calculated in the new
method. In the calculations, all the Ncut lowest harmonic-
oscillator states having principal quantum numbers less
than or equal to Nosc were included in the basis. Our tests
indicate that for Nosc ≥ 35 the results do not depend on
the choice of this parameter. Consequently, in our work we
adopted the value of Nosc = 37. Similar tests concerning
the basis size Ncut demonstrate that Ncut = 5400 is a safe
value, and fig. 1 nicely illustrates this point.

To guarantee the optimal choice of the oscillator fre-
quency parameter η for given Ncut, we performed system-
atic studies of shell corrections for a number of nuclei.
Let us first consider the old variant of calculations. A rep-
resentative example is presented in fig. 2, which displays
the neutron shell correction for 262Sg156 as a function of
Ncut and η. It is seen that, for a fixed value of η, δEshell

increases as a function of Ncut, at least in the region of
standard values of η (1.1 < η < 1.4). Also, at fixed values
of Ncut, δEshell generally decreases with η. Moreover, the
actual behavior of shell correction on Ncut and η depends
on both particle number and deformation. The latter is
illustrated in fig. 2 which displays results of calculations
at i) deformed ground state and ii) spherical saddle point.
While the neutron shell corrections calculated in the old
method are unstable with respect to Ncut and η (see also
fig. 2 of ref. [26] for other examples), there appear regions
of constant δEshell when Ncut and η are varied simultane-
ously. This effect is easy to understand: by increasing the
size of the oscillator basis Ncut, one is gradually picking
up large-momentum gas states having large spatial exten-
sions. Since the r.m.s. radius is inversely proportional to
the oscillator frequency, the same effect can be achieved
by decreasing the value of η. Moreover, it is interesting to
see that the trajectories of constant δEshell weakly depend
on nuclear shape (in the range of standard values of η).
Therefore, taking into account the generic correlation be-
tween Ncut and η, in the standard variant of calculations
we took Nosc = 21, η = 1.25, and Ncut = 1000 and 1200
for protons and neutrons, respectively.
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Table 1. Deformation-renormalized energies Eren (7), neutron δEn
shell, and proton δE

p

shell
shell corrections (1), equilibrium

deformations β2, β4, smoothing widths γn, γp, and Fermi energies λn, λp for even-even Hassium isotopes.

N Eren δEn
shell δE

p

shell
β2 β4 γn γp λn λp

(MeV) (MeV) (MeV) (1.2h̄ω0) (1.2h̄ω0) (MeV) (MeV)
144 −7.4053 −1.4835 −2.4986 0.2381 0.0114 1.048 0.963 −9.837 1.545
146 −8.0246 −1.7454 −3.0870 0.2427 −0.0003 1.046 0.991 −9.536 1.140
148 −8.6012 −2.5788 −3.3857 0.2423 −0.0064 1.044 1.017 −9.203 0.729
150 −9.3360 −4.1497 −3.7074 0.2435 −0.0138 1.043 1.040 −8.833 0.326
152 −9.9055 −5.5372 −3.9657 0.2521 −0.0223 1.039 1.062 −8.426 −0.070
154 −10.1902 −5.0896 −4.6008 0.2470 −0.0380 1.039 1.082 −8.126 −0.471
156 −10.4324 −5.2499 −4.6755 0.2443 −0.0426 1.034 1.114 −7.784 −0.895
158 −10.7087 −5.9735 −4.8252 0.2409 −0.0524 1.025 1.160 −7.480 −1.336
160 −11.0840 −6.5154 −4.8485 0.2359 −0.0613 1.016 1.190 −7.112 −1.799
162 −11.3117 −7.6575 −4.7876 0.2263 −0.0697 1.010 1.133 −6.643 −2.290
164 −10.6685 −6.5948 −4.6677 0.2235 −0.0731 1.003 1.101 −6.206 −2.730
166 −9.7675 −5.7268 −4.3262 0.2146 −0.0769 1.000 1.093 −5.941 −3.203
168 −8.9234 −5.2412 −3.9494 0.2066 −0.0795 0.997 1.090 −5.704 −3.657
170 −8.1844 −5.1549 −3.0415 0.1857 −0.0789 0.996 1.082 −5.546 −4.130
172 −7.9748 −5.4902 −1.9430 0.1632 −0.0700 0.993 1.071 −5.361 −4.563
174 −8.1349 −6.0477 −0.8939 0.1085 −0.0449 1.003 1.050 −5.312 −5.004
176 −8.2158 −6.8702 −0.3468 0.0899 −0.0465 1.006 1.059 −4.970 −5.402
178 −7.9006 −6.3756 0.0088 0.0782 −0.0336 1.011 1.067 −4.685 −5.775
180 −7.7094 −6.5613 0.3358 0.0699 −0.0300 1.011 1.098 −4.356 −6.152
182 −7.1249 −5.7553 0.3405 0.0699 −0.0300 1.007 1.153 −3.963 −6.511
184 −7.9774 −7.8955 4.3252 0.0002 0.0000 1.019 1.196 −3.539 −6.979

Fig. 3. Neutron shell correction for 270Hs162 as a function
of Ncut and η. The calculations were carried out at the de-
formed ground-state minimum (left) and at the spherical sad-
dle point (right). The Green’s function shell-correction method
with Nosc = 37 was used. The difference between contour lines
is 200 keV.

Let us now move on to the new variant of calcula-
tions. Figure 3 illustrates the dependence of deformed and
spherical neutron shell corrections in 270Hs on Ncut and η.
Contrary to the standard prescription, in the new method
δEshell is perfectly stable at large values of Ncut, and it

is practically independent of η. This is because the spuri-
ous contribution from the free neutron gas has now been
removed. Similar results were obtained for other nuclei.
Based on our analysis, in the new variant of calculations
we used η = 1.45 and Ncut = 5400.

Usually, the choice of the Strutinsky smoothing pa-
rameters p (the order of the correction polynomial) and γ
(smoothing range) is determined by the so-called plateau
condition, which expresses the fact that the smooth single-
particle energy must not depend on p and γ. However, for
finite-depth potentials the plateau condition can hardly be
met. To overcome this difficulty, the generalized plateau
condition was introduced [26] that is based on the lin-
ear energy dependence of the average level density in the
intermediate-energy region below the Fermi level. Specif-
ically, in the new recipe, one minimizes the deviation

χ2(γ, p) =

∫ eu

el

[g̃(e, γ, p)− a− be]
2
de, (8)

where a and b, at given γ and p, are determined by the
method of least squares, and optimal γ and p are obtained
by a direct minimization. As demonstrated in ref. [26],
the optimal values of γ and p are correlated. That is, p
increases with γ.

The generalized plateau condition was also applied in
our work. We made careful investigations of the energy in-
tegral [el, eu] appearing in eq. (8). Figure 4 displays neu-
tron and proton shell corrections in 270Hs162 as functions
of ∆eul = eu − el and eu. It is seen that shell corrections
depend very weakly on these two parameters. Following
a systematic analysis, we adopted the values of p = 8,
eu = −10.5 MeV, and ∆eul = 1.5h̄ω0.
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Fig. 4. Neutron (top) and proton (bottom) shell corrections
for 270Hs162 as a function of∆eul and eu. The calculations were
carried out at the deformed ground-state minimum for two
values of the curvature correction parameter p: p = 8 (left) and
p = 10 (right). The Green’s function shell-correction method
was used. The difference between contour lines is 100 keV.

Table 1 presents, as an example, results of
macroscopic-microscopic calculations for the series of Hs
isotopes. The optimal proton and neutron values of γ were
obtained by minimizing the deviation (8) for each nucleus.
The resulting smoothing ranges are fairly close to those of
ref. [26] (cf. fig. 1 therein).

4 Shell corrections and deformation energies

Having determined all the parameters used in shell-
correction calculations, we are ready to assess the differ-
ence between the old and the new smoothing procedure.
The results of our calculations of shell corrections and
binding energies for even-even nuclei with 92 ≤ Z ≤ 126
and 132 ≤ N ≤ 188 are shown in fig. 5. The general pat-
tern of shell corrections is consistent with the previous WS
results of ref. [10]. That is, the strongest shell-stabilization
effects are predicted at particle numbers Z = 114 and
N = 184 corresponding to pronounced spherical gaps in
the WS model, and at Z = 108, N = 152, and N = 162,
which are associated with deformed shell closures.

The main result of our study is displayed in fig. 6,
which shows the difference between results obtained

Fig. 5. (a) Neutron shell correction; (b) proton shell cor-
rection; and (c) deformation-renormalized energy (7) calcu-
lated with the Green’s function shell-correction method for
the ground states of even-even nuclei with 92 ≤ Z ≤ 126 and
132 ≤ N ≤ 188.

within the old and the new method. The difference be-
tween total energies, ∆Eren, is almost entirely due to neu-
trons. Indeed, when comparing the values of proton shell
corrections in old and new methods, one can see that they
are practically identical, with the largest differences not
exceeding 0.1MeV. The reason for this similarity is the
confining effect of the Coulomb barrier which, in those
heavy nuclei, effectively shifts the proton continuum by
more than 10MeV. This is no longer the case for neutrons,
see fig. 6(a). The continuum-corrected shell corrections are
lower than the standard ones, and the difference can reach
as much as 1.6 MeV. The largest correction to the total
energy due to the neutron gas, ∆Eren, is calculated for
nuclei with large values of neutron excess, i.e., for nuclei
lying in the vicinity of Z = 114 and N = 184. Indeed, as
shown in table 1, the neutron Fermi level in these nuclei
is ∼ −4 MeV.
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Fig. 6. Difference between neutron shell correction (a) and
total energy (b) calculated within the new and the old method
for the ground states of even-even nuclei with 92 ≤ Z ≤ 126
and 132 ≤ N ≤ 188.

Fig. 7. Top: two-neutron separation energies in the even-
even Hassium isotopes calculated within the new and the old
method. Bottom: difference between two-neutron separation
energies calculated within the new and the old method.

The continuum correction to the binding energy,
∆Eren, varies fairly smoothly with N and Z. Conse-
quently, the binding energy differences are expected to
be only weakly affected by continuum effects. Figure 7

displays two-neutron separation energies in the even-even
Hs isotopes calculated within both smoothing procedures.
The average difference between old and new results is less
than 100 keV, which is well below other theoretical uncer-
tainties of the macroscopic-microscopic method.

In summary, in this work we performed the systematic
analysis of shell corrections in even-even heavy and su-
perheavy nuclei using the standard Strutinsky smoothing
and the Green’s function approach that properly accounts
for the effect of a single-particle continuum. It has been
demonstrated that the spurious contribution from the un-
physical neutron gas does not exceed ∼1.5MeV, the max-
imum effect being predicted for nuclei with the largest
neutron excess. (Proton shell corrections are practically
not influenced by the continuum effects, thanks to large
Coulomb barriers.) While the absolute difference between
the new and old method is appreciable, the influence of
the unbound spectrum on binding energy differences (e.g.,
separation energies and alpha-decay values) is expected to
be small. This means that most of the conclusions of pre-
vious works on superheavy elements based on finite-depth
potentials (such as Woods-Saxon or folded-Yukawa) are
not going to be seriously affected by the single-particle
continuum effects.
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