

Oak Ridge, March 30-31, 2005

Microscopic calculations of PES : fission barriers, fission paths and fusion barriers

L. Bonneau

Los Alamos National Laboratory

in collaboration with P. Quentin and D. Samsœn,

Centre d'Etudes Nucléaires de Bordeaux-Gradignan (France)

Contents

*	Introduction – Motivation
*	1 st part : Formalism and numerical aspects
*	2 nd part : Fission barriers of actinides
*	3 rd part : Fission and fusion properties of the PES of heavy nuclei
*	4 th part : Fission barriers and fission paths of the light nucleus ⁷⁰ Se
*	Conclusion – Perspectives

Motivation : fission and fusion static properties from the PES in the Hartree–Fock–BCS approach

Tests of reliability :

- Fission barriers : comparison with experimental data in the actinide region
- most probable fragmentations : comparison of calculated fusion valleys with experimental mass distributions
- Application to super-heavy elements :
- stability against fission : comparison with other theoretical works and some experimental data
- most favorable reaction channels : fusion barriers and minimal excitation energy of the compound nucleus
- Application to the A = 70 mass region :
- conditional fission barriers below the Businaro–Gallone point

4/36

1st part : Formalism and numerical aspects

Approximate resolution of the nuclear many-body problem at low energy

- * Basic assumptions : non relativistic nucleons, without internal structure and interacting through an effective 2-body force
- * Mean field in the Hartree-Fock approximation with the Skyrme interaction (SkM* parametrization : good surface properties and reasonable spectroscopic properties)
- * Pairing correlations : (T = 1, S = 0) channel and even-even nuclei :

G ■ BCS approximation (seniority force *G*)

Energy corrective terms

Approximate treatment of the symmetries broken by the mean field

Approximate restoration of translation symmetry : removal of the 1-body contribution to the center of mass kinetic energy

$$E_{kin}^{(corr)} \approx \left(1 - \frac{1}{A}\right) E_{kin}$$
 assuming $m_n \approx m_p$

⇒ Approximate restoration of rotation symmetry : approximate projection of $|\Psi_{intr}\rangle$ onto 0⁺ ~ rotational zero-point motion correction

$$E_{0^+} \approx E_{intr} - \frac{\langle \hat{\mathbf{J}}^2 \rangle}{2 \,\mathcal{I}} \quad \text{where } E_{intr} = \frac{\langle \Psi_{intr} | \hat{H}_{eff} | \Psi_{intr} \rangle}{\langle \Psi_{intr} | \Psi_{intr} \rangle}$$

 $\langle \hat{J}^2 \rangle$: expectation value of \hat{J}^2 in a BCS state \mathcal{I} : moment of inertia, Belyaev formula

Vibrational zero-point motion : no systematic effect expected as function of deformation ⇒ not taken into account

Constrained calculations

Variational calculations with several constraints :

- ☞ approximate restoration of particle number within HF+BCS (good *N* and *Z* on average)
- position of the center of mass of the fissioning nucleus : reference point for global multipole moments calculations
- shape of the fissioning nucleus : elongation $\langle \hat{Q}_{20} \rangle$, triaxiality $\langle \hat{Q}_{22} \rangle$, left-right asymmetry $\langle \hat{Q}_{30} \rangle$, neck formation $\langle \hat{Q}_{40} \rangle$ (axial and parity symmetries non simultaneously broken)
- ⇐ characteristics of fragments : mass A_H and charge Z_H of the heavy fragment, elongations $\langle \hat{Q}_{20}^{(i)} \rangle$ of both fragments and distance between their centers of mass $D = |z_{cm}^{(1)} z_{cm}^{(2)}|$

$$\implies \delta \left[\langle \hat{H} \rangle - \sum_{q} \lambda_{q} \langle \hat{N}_{q} \rangle - C_{20} \left(\langle \hat{Q}_{20} \rangle - \underbrace{\mu_{20}}_{\text{targeted } \langle \hat{Q}_{20} \rangle} \right)^{2} - \cdots \right] = 0$$

 \rightsquigarrow

Truncated expansion basis for single-particle wave-functions

Decomposition of sp wave-functions onto the axial harmonic oscillator (HO) truncated basis : $\hbar \omega_{\perp}(n_{\perp} + 1) + \hbar \omega_{z} \left(n_{z} + \frac{1}{2}\right) \leq \hbar \omega_{0}(N_{0} + 2) \qquad N_{0} \rightsquigarrow \text{basis size}$

rightarrow optimization of the basis parameters : $b = \sqrt{m\omega_0/\hbar}$ and $q = \omega_\perp/\omega_z$

convergence with N_0 :

N_0	E_A (MeV)	E_{II} (MeV)	E_B (MeV)
12	10.8	2.5	8.6
14	10.9	1.9	7.1
16	10.1	1.3	6.0
18	10.2	1.3	6.1
20	10.2	1.2	5.9

Relevance of the HO basis at scission and beyond

Comparison with a "2-center basis" : orthogonal polynomials associated with a weight function proportional to the sum of two gaussians : $G_{z_0}(z) \propto e^{-\beta_z^2(z-z_0)^2} + e^{-\beta_z^2(z+z_0)^2}$ (along *z* only)

 \Rightarrow HO basis \rightsquigarrow reasonable description of the whole system wave function

2ND part : Fission barriers of actinides

Method of calculating the fission barrier heights

- The formation energy curve : constraint on $\langle \hat{Q}_{20} \rangle$ step by step from the spherical point imposing axial and left-right symmetries
- Determination of extrema : local minima (GS, isomeric states) and maxima (saddle points)
- Thecking the stability of extrema against asymmetric degrees of freedom :
 - * inner barrier : triaxial shapes
 - * outer barrier : left-right asymmetric shapes
- Relative energies of maxima with respect to GS : upper limits of barrier heights (partial exploration of a limited deformation space)

The outer barrier of even Fm isotopes

 \sim Existence of the outer barrier only for 242 < A < 258

	•			
⊢ _{def} (WeV) -1760	Isotope	E_A (MeV)	E_{II} (MeV)	E_B (MeV)
	²⁴⁰ Fm	4.2		
-1780 240 Fm	²⁴² Fm	5.6	-1.4	0.0
-1800	²⁴⁴ Fm	7.2	-1.2	1.0
-1820 - 244 Fm	²⁴⁶ Fm	8.1	-1.0	2.4
²⁴⁶ Fm	²⁴⁸ Fm	9.6	-0.7	3.3
-1840 - 24°Fm	²⁵⁰ Fm	9.6	-0.1	3.8
-1860 - 250 Fm	²⁵² Fm	8.1	-0.6	3.9
-1880	²⁵⁴ Fm	8.2	-0.7	1.5
²⁵⁶ Fm	²⁵⁶ Fm	8.3	-1.1	0.1
-1900 258 Fm	²⁵⁸ Fm	7.5		0.2
-1920 ²⁶⁰ Fm	²⁶⁰ Fm	7.4		
-1940 262 Fm	²⁶² Fm	6.7		
-1960	²⁶⁴ Fm	6.5		
0 50 100 150 200 250 300 350 Q ₂₀ (b)				

Correlation between the outer barrier height and the experimental fission half-life^a

 \rightsquigarrow

^aD. Hoffman *et al.*, Nucl.Phys. A502 (1989) 21c

Symmetry breaking

Axial or reflection symmetry breaking

The provide the second second

Comparison with experimental data :

Nucleus	E_A (MeV)		E _{II} (MeV)		E_B (MeV)	
	exp. ^a	th. ^b	exp. ^a	th. ^b	exp. ^a	th. ^b
²³⁰ Th	6.1	4.9	_	1.8	6.5	4.4
²³² Th	5.8	5.5	2.8 ^d	1.2	6.2	4.1
²³⁴ U	5.6	5.3	_	1.8	5.5	5.1
²³⁶ U	5.6	6.2	2.3	1.5	5.6	4.6
²⁴⁰ Pu	5.6	7.1	2.4	1.3	5.1	4.1
²⁵² Cf	5.3 ^c	7.1	_	-0.3	3.5 ^c	2.9

rms error (E_A)=1.0 MeV, rms error (E_B)=1.8 MeV \Rightarrow global rms error=1.5 MeV

^aS. Bjørnholm, J.E. Lynn, Rev. Mod. Phys. 52 (1980) 725

^bL. Bonneau, P. Quentin and D. Samsœn, Eur. Phys. J. A21 (2004) 391

^cG. N. Smirenkin, IAEA Report (1993) INDC(CCP)-359

^dH. X. Zhang *et al.*, Phys. Rev. C34 (1986) 1397

Hyperdeformed left-right asymmetric well in ^{230,232}Th isotopes ^a

^aJ. Blons *et al.*, Nucl. Phys. A477 (1988) 231

^bJ.-F. Berger *et al.*, Nucl. Phys. A502 (1989) 85c

^cL. Bonneau, P. Quentin and D. Samsœn, Eur. Phys. J. A21 (2004) 391

3^{RD} part :

Fission and fusion properties of the PES of heavy nuclei

Method of exploring the PES

- * Determination of fission valleys :
 - rightarrow searching for local minima in the $\langle \hat{Q}_{30} \rangle$ direction at given $\langle \hat{Q}_{20} \rangle$ -values
 - \Leftrightarrow following the corresponding valleys : deformation energy curves by constraining $\langle \hat{Q}_{20} \rangle$ step by step from each of these minima until they become unstable
- * Determination of fusion valleys :
 - rightarrow searching for local minima in the $\langle \hat{A}_{heavy} \rangle$ direction at given $\langle \hat{Q}_{20} \rangle$ -values
 - Following the corresponding valleys : deformation energy curves by constraining $\langle \hat{Q}_{20} \rangle$ step by step from each of these minima until corresponding two-body shapes become unstable

Shape transition of the fragments mass distribution of the Fm isotopes

Asymmetric fission path of ²⁵⁶Fm

Asymmetric fission path of ²⁵⁶Fm

Symmetric fission path of ²⁵⁸Fm

Symmetric fission path of ²⁵⁸Fm

continuity of the energy variation

rightarrow discontinuity of the Q_{40} and $\beta_2^{(frag)}$ variations

Stability of super-heavy nuclei against fission

 $\Rightarrow {}^{266}$ Hs (*Z* = 108) : *E_A* = 7.4 MeV ; P. Moller *et al.* : 7.5 MeV (priv. comm.)

$rac{}$ doubly-magic SH nucleus Z = 114, N = 184: $E_A = 7.8 \text{ MeV}$

Exp. $E_A(^{292}114) > 6.8 \text{ MeV}^a$; Smolanczuk^b : $E_A(^{298}114) = 6.2 \text{ MeV}$; Bürvenich^c : $E_A(^{290}114) = 3.56 - 8.57 \text{ MeV}$

^a M.G. Itkis, Yu.Ts. Oganessian and V.I. Zagrebaev, PRC65, 044602 (2002)
^b R. Smolanczuk, PRC56, 812 (1997)
^c T. Bürvenich, M. Bender, J.A. Maruhn and P.-G. Reinhard, PRC69, 014307 (2004)

 $\sim \rightarrow$

Most probable fragmentation

☞ Configuration energy curves (at a fixed Q_{20} -value) compared with experimental mass distributions : minimal energy ⇒ ≈ maximal yield

 $\sim \rightarrow$

rather shallow minimum at A/2

∜

symmetric mass distribution with a rather large base

more pronounced minimum at A/2 \downarrow symmetric mass distribution more peaked at

A/2

E.K. Hulet *et al.*, Phys. Rev. Lett. 56 (1986) 313

The mass of the masses of fragments as a function of the mass of the compound nucleus

K.F. Flynn et al., Phys. Rev. C5 (1972) 1725

 \implies reasonably close to the experimental mean fragment masses

Fusion properties of the PES of heavy nuclei

Fusion valleys of ²⁵⁸Fm and ²⁶⁶Hs

most favorable fusion reaction channel : ⁵⁶Cr(²¹⁰Po,1n)²⁶⁵Hs (1*n* channel experimentally predominant in the ⁵⁸Fe(²⁰⁸Pb,1n) ²⁶⁵Hs^a) ^a S.Hoffman *et al.*, Z.Phys. A358,377 (1997)

Fusion barrier heights

$$B_{fus} = Q_{fus} + E_{CN}^{(min)}$$

 Q_{fus} : *Q*-value of the reaction (involving the CN, not the evaporation residue) $E_{CN}^{(min)}$: energy at the top of the fusion barrier with respect to the GS of the CN

CN	reaction	$E_{CN}^{(min)}(exp)$	$E_{CN}^{(min)(HF)}$	$B_{fus}^{(HF)}$	$B_{fus}^{(mic-mac)}$	B ^(ETF) b	$B_{fus}^{(Bass)}$
²⁵⁶ Fm	²⁰⁶ Hg+ ⁵⁰ Ca		20.0	166.3		175.5	
²⁵⁸ Fm	²⁰⁶ Hg+ ⁵² Ca		19.5	163.3		174.7	
²⁶⁶ Hs	²¹⁰ Po+ ⁵⁶ Cr		9.7	202.1		219.8	
²⁶⁶ Hs	²⁰⁸ Pb+ ⁵⁸ Fe	~10 ^a			223.89 ^c	232.5	226.8

^a S.Hoffman *et al.*, Z.Phys. A358,377 (1997)

^b A. Dobrowolski, K. Pomorski and J. Bartel, Nucl. Phys. A729 (2003) 713

^c P. Moller, priv. comm.

4^{TH} part :

Conditional fission barriers of the light nucleus ⁷⁰Se

Strategy

Strategy

Fissility parameter x < 0.35. below the Businaro-Gallone point \parallel conditional barriers

- rightarrow deformation energy curve from the GS
- determination of the energetically favored exit channels
- determination of a continuous to each exit channel

 \downarrow upper limit of barrier height *B*_{*Z*}

=

relative energy of the highest point along the path (saddle point)

Exit channels

Energetically favored exit channels

Saddle points

Searching for saddle points

rightarrow From the GS to the ⁵⁸Ni+¹²C valley

Heights of the conditional fission barriers *B*_Z

Z _{light}	exp. ^a	this work ^b	exp.macro. ^a	Royer <i>et al.</i> ^c	Möller <i>et al</i> . ^d
6	25.3±0.8	34.7	29.5 ± 0.8	34.5	_
15	35.1±0.8	44.9	39.3±0.8	40.5	_
17	35.2 ± 0.8	_	39.4 ± 0.8	40.6	37.6

rightarrow upper limits of our *B*_Z-values : 30 to 35 % (~10 MeV) above the experimental values

^aT.S. Fan *et al.*, Nucl. Phys. A679, 121 (2000)

^bL. Bonneau and P. Quentin, submitted to PRC

^cG. Royer and K. Zbiri, Nucl. Phys. A697, 630 (2002)

^dP. Möller, A. J. Sierk and A. Iwamoto, Phys. Rev. Lett. 92, 072501 (2004)

Conclusions

- * Satisfactory description of fission barriers of actinides
- * Reasonable reproduction of most probable fragmentations (fragments shell effects)
- * Overestimation of the ⁷⁰Se conditional barriers but lower than expected (despite overestimation of the curvature energy by ~ 10 MeV)
- * Reasonable static fusion properties (min. excitation energy of CN)

Perspectives

- * Formalism : better treatment of pairing correlations in separated fragments shapes (exact particle number approach+ δ pairing force
- * Fully microscopic study of fragments properties : excitation energy, spin
- * Dynamical aspects : pre-scission kinetic energy, distributions (of scission configurations, fragments mass, TKE)

PES of ²⁵²Cf

Sym. and asym. fusion valleys of ²⁵⁶Fm

Symmetric and asymmetric fusion valleys of ²⁵⁶Fm

Stability of super-heavy nuclei against fission

rightarrow Even isotopes of No (Z = 102) and Rf (Z = 104) :

Isotope	E_A (MeV)	E _{II} (MeV)	E_B (MeV)
²⁵² No	8.6	-1.5	2.2
²⁵⁴ No	8.0 (7.8)	-1.4	2.2
²⁵⁶ No	8.7	-1.5	0.1
²⁵⁶ Rf	8.1 (7.6)	-2.0	0.0
²⁵⁸ Rf	7.9		
²⁶⁰ Rf	7.5		
²⁶² Rf	7.8		