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Particle Number Projected HFB Method
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PNP Skyrme HFB Method
DFT Complication
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PNP Skyrme HFB Method
Energy Functional under ‘Mixed densities’ prescription

Canonical Representation

Energy 
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PNP Skyrme HFB Method

PNP HFB 
Equations

Grid Points

Canonical 
Representation

VAP under  ‘Mixed densities’ prescription
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PNP Skyrme HFB Method
Problems: Stability

Slow (even unstable) procedure Stable procedure
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PNP Skyrme HFB Method
Problems: Cut-off procedure for Delta pairing forces
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PNP Skyrme HFB Method
Problems: Pairing Strength

HFB 
Method

PNP HFB 
Method
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SLY4 + mixed delta pairing forces
HFB within 20 major HO shells
Complete Ca chain 
Comparison:

HFB+LN results (LN)
PAV HFB+LN results (PLN)
VAP PNP HFB results (PNP) 

PLN  pairing strength fitted to Δn @ 120Sn 
PNP pairing strength to PLN Etot @ 44Ca 

With L=9 gauge-angle points 
the code is just 9 times slower

PNP Skyrme HFB Method

Ca Chain Calculations
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PNP Skyrme HFB Method
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LN method should be avoided
One should use PLN instead

PLN is a good approximation 
for open shell nuclei 

total energy differences 
are less than 250 KeV

PLN is wrong for closed shell 
nuclei 

total energy differences 
could be more than 1 MeV

One should try to correct PLN 
by  projecting from neighboring 
nuclei
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PNP within DFT

Well Known Singularity
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PNP HFB Method
Shift invariance and Energy sum rule

Shift 
Invariance

Energy 
Sum Rule

Exact 
Relations
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PNP within DFT

Broken Shift Invariance  

Spherical Nuclei Deformed Nuclei
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PNP within DFT

PNP Energy

New 
complex
variable

Cauchy's 
residue 
theorem
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PNP within DFT
PNP Energy

PNP Energy – explicit pole dependence

Shifted PNP Energy
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Local Shift Invariance

Spherical Nuclei Deformed Nuclei
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Exact versus Approximate DFT

PNP within DFT
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PNP within DFT
Energy Sum Rule
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Deformation Energy Calculations 
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PNP Skyrme HFB Method
Conclusions

LN method should be avoided
PLN is a good for open shell nuclei
PLN is wrong for closed shell nuclei
One should try to correct PLN

When no singularity exists on the unit circle

– One should use PLN instead
– Error is less than 250 KeV
– Error could be more than 1 MeV
– Projecting from neighboring nuclei

All singularities cancel if EDF is exact

For an approximate functional:

Shift Invariance is broken
Energy Sum rule is not satisfied
Density dependence is not analytical
Instability in VAP 

– Locally it is satisfied
– Satisfied on the unit circle only
– Valid even for Gogny forces
– No solution at the moment

PNP versus DFT


