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The density dependent delta pairing interaction,

usually used in the Skyrme-HFB calculations:

Vp(~r, ~r
′) = V0

(

1 − χ
ρ(~r)
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)

δ(~r − ~r′)
zero range in the coordinate space

corresponds to infinite range in the

momentum space

χ = 0 volume pairing

χ = 1/2 mixed pairing
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2. unitarity of the Bogoliubov

transformation
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Skyrme density functional is a sum of two terms:

E[ρ, κ] = ESk[ρ] + Epairing[κ],

ρ = B∗BT ,

κ = B∗AT .

Unitarity of the Bogoliubov transformation

guarantees that:

➪ ρ is hermitian

➪ κ is antisymmetric

The energy cutoff procedure does not affect ρ

significantly, since removed states correspond to

very small singular values of B. However, since

v2
Ai + v2

Bi = 1,

repercussions of the cutoff for κ are more severe:

the pairing tensor is no longer antisymmetric, but

it develops a finite symmetric part. Usually one

disregards this symmetric part in the HFB

calculations.
density matrix

pairing tensor
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Ay Pairing Tensor Ay4 / 13
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Ay Antisymmetricity of the Pairing Tensor Ay5 / 13

However, the smallness of symmetric component of the pairing

tensor may be deceiving:

➮ In EDF approach densities ρ and κ are independent dy-

namical variables.

➮ In HFB generalized density matrix R must be projective.

R =

(

ρ κ

−κ∗ 1 − ρ∗

)

➮ Antisymmetricity of the pairing tensor is a result of

fermionic commutation relations for particle and quasipar-

ticle operators.

Therefore, symmetric component of the pairing tensor is not

just a minor disturbance to be discarded.

symmetric com-

ponent indicates

bosonic character

of the correspond-

ing many-particle

state

constrain within

HFB theory
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Ay The Background of the Method Ay6 / 13

We propose a method of restoring the unitarity by intro-

ducing a truncated single-particle Hilbert space, in which

the HFB equations are to be solved.

❈ We want to find a new particle basis, in which the trun-

cated (B∗
i , A

∗
i ) HFB results are best reproduced.

❈ There are two sets of K vectors to be expanded in

(B∗, A∗).
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Ay Singular Value Decomposition (SVD) Ay7 / 13

A singular value decomposition of an

(M × N), M ≥ N matrix A is any

factorization of the form

A = SV DT ,

where S (M × M), D (N × N) are

orthogonal matrices and V (M × N)

is a diagonal matrix with matrix elements

vi = Vii ≥ 0.

SVD matrices

❅ DT rotates to the ’singular’ refer-

ence frame

❅ V ’stretches’ vectors by the factor of

corresponding singular values vi

❅ S rotates the reference frame

Example:

A
[

1.24 .85

.14 1.25

−.12 −.07

]

=

S
[

.79 .60 .07

.60 −.79 −.07

−.07 −.07 .99

]

×

V
[

1.8 0

0 .8

0 0

]

D
T

[

.6 .8

.8 −.6

]

(1, 0, 0)

(0, 1, 0)
1.8(.79, .60, .07)

0.8(.60,−.79,−.07)
0(−.07,−.07, .99)

(0, 0, 1)
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Ay SVD for HFB matrices Ay8 / 13

SVD is a convenient method of orthogonalization of a set of vectors. In a M -

dimensional space:

❇ SVD of two sets of K orthogonal vectors, one proportional to each other (i.e.

BCS), gives K ’singular’ states corresponding to non-zero singular value.

❇ SVD of a set of 2K vectors, gives no more than min(2K, M) ’singular’ states

corresponding to non-zero singular value.

❇ SVD of A, B matrices is more general than the Bloch-Messiah decomposition.

❇ Gives canonical basis with higher precision than the diagonalization of ρ.
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Ay Method Ay9 / 13

diagonalization of H energy cutoff

new densities

new fields

construction of H
SVD of [BA] matrix

→ truncated basis

ho → truncated basis

diagonalization of H

in truncated basis

truncated

basis→ ho

end0th step unconverged

1st step

0st step converged

full convergence

+ step 0th generates input for step 1st

- parameters are easy to adjust

+ the dimensionality of the problem

may be reduced by the consistent

use of the ’truncated’ basis in step

1st

+ self-consistent minimalization in a

given truncated basis - variational

method

- ’singular’ basis may not be self-

consistent with the final solution
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Ay Singular Values of [B∗A∗] - example Ay10 / 13
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Ay Particle Space Truncation - Results (I) Ay11 / 13
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Ay Particle Space Truncation - Results (II) Ay12 / 13
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Ay Regularization in Truncated Space Ay13 / 13
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