On the non-Unitarity of the Bogoliubov Transformation due to the Quasiparticle Space Truncation

P.J. Borycki

University of Tennessee / Warsaw University of Technology

Collaboration:

J. Dobaczewski - Warsaw, UT

W. Nazarewicz - UT, ORNL, Warsaw

M. Stoitsov - UT, ORNL, Sofia

Pairing (I)

2 / 13

The *density dependent delta* pairing interaction, usually used in the Skyrme-HFB calculations:

$$V_p(\vec{r}, \vec{r'}) = V_0 \left(1 - \chi \frac{\rho(\vec{r})}{\rho(0)} \right) \delta(\vec{r} - \vec{r'})$$

$$\chi = 0$$
 volume pairing $\chi = 1/2$ mixed pairing

zero range in the coordinate space corresponds to infinite range in the momentum space

PROBLEMS:

- 1. pairing renormalization scheme
- 2. unitarity of the Bogoliubov

transformation

Piotr Borycki

On the non-Unitarity of the Bogoliubov Transformation...

Pairing (I)

2 / 13

The *density dependent delta* pairing interaction, usually used in the Skyrme-HFB calculations:

$$V_p(\vec{r}, \vec{r'}) = V_0 \left(1 - \chi \frac{\rho(\vec{r})}{\rho(0)} \right) \delta(\vec{r} - \vec{r'})$$

$$\chi = 0$$
 volume pairing $\chi = 1/2$ mixed pairing

zero range in the coordinate space corresponds to infinite range in the momentum space

PROBLEMS:

- 1. pairing renormalization scheme
- 2. unitarity of the Bogoliubov

transformation

Piotr Borycki

On the non-Unitarity of the Bogoliubov Transformation...

Pairing (II)

3 / 13

Skyrme density functional is a sum of two terms:

$$E[\rho, \kappa] = E_{Sk}[\rho] + E_{pairing}[\kappa],$$

$$\rho = B^* B^T,$$

$$\kappa = B^* A^T.$$

Unitarity of the Bogoliubov transformation guarantees that:

The energy cutoff procedure does not affect ρ significantly, since removed states correspond to very small singular values of *B*. However, since

$$v_{Ai}^2 + v_{Bi}^2 = 1,$$

repercussions of the cutoff for κ are more severe: the pairing tensor is no longer antisymmetric, but it develops a finite symmetric part. Usually one disregards this symmetric part in the HFB calculations.

Piotr Borycki

On the non-Unitarity of the Bogoliubov Transformation...

Pairing Tensor

Antisymmetricity of the Pairing Tensor

However, the smallness of symmetric component of the pairing

tensor may be deceiving:

- ▷ In EDF approach densities ρ and κ are independent dynamical variables.
- $rac{1}{2}$ In HFB generalized density matrix \mathcal{R} must be projective.

$$\mathcal{R} = \begin{pmatrix} \rho & \kappa \\ -\kappa^* & 1 - \rho^* \end{pmatrix} \longleftarrow \begin{matrix} \text{constrain within} \\ \text{HFB theory} \end{matrix}$$

Piotr Borycki

On the non-Unitarity of the Bogoliubov Transformation...

Antisymmetricity of the Pairing Tensor

However, the smallness of symmetric component of the pairing

tensor may be deceiving:

- ▷ In EDF approach densities ρ and κ are independent dynamical variables.
- $rac{1}{2}$ In HFB generalized density matrix \mathcal{R} must be projective.

$$\mathcal{R} = \begin{pmatrix} \rho & \kappa \\ -\kappa^* & 1 - \rho^* \end{pmatrix} \longleftarrow \begin{matrix} \text{constrain within} \\ \text{HFB theory} \end{matrix}$$

Piotr Borycki

On the non-Unitarity of the Bogoliubov Transformation...

Antisymmetricity of the Pairing Tensor

However, the smallness of symmetric component of the pairing

tensor may be deceiving:

- ▷ In EDF approach densities ρ and κ are independent dynamical variables.
- $rac{1}{2}$ In HFB generalized density matrix \mathcal{R} must be projective.

$$\mathcal{R} = \begin{pmatrix} \rho & \kappa \\ -\kappa^* & 1 - \rho^* \end{pmatrix} \longleftarrow \begin{matrix} \text{constrain within} \\ \text{HFB theory} \end{matrix}$$

Piotr Borycki

On the non-Unitarity of the Bogoliubov Transformation...

We propose a method of restoring the unitarity by introducing a truncated single-particle Hilbert space, in which the HFB equations are to be solved.

 $\$ We want to find a new particle basis, in which the truncated (B_i^*,A_i^*) HFB results are best reproduced.

We propose a method of restoring the unitarity by introducing a truncated single-particle Hilbert space, in which the HFB equations are to be solved.

 $\$ We want to find a new particle basis, in which the truncated (B_i^*,A_i^*) HFB results are best reproduced.

We propose a method of restoring the unitarity by introducing a truncated single-particle Hilbert space, in which the HFB equations are to be solved.

 $\$ We want to find a new particle basis, in which the truncated (B_i^*,A_i^*) HFB results are best reproduced.

Singular Value Decomposition (SVD)

A singular value decomposition of an $(M \times N)$, $M \ge N$ matrix A is any factorization of the form

 $A = SVD^T,$

where $S (M \times M)$, $D (N \times N)$ are orthogonal matrices and $V (M \times N)$ is a diagonal matrix with matrix elements $v_i = V_{ii} \ge 0$.

SVD matrices

- * D^T rotates to the 'singular' reference frame
- * V 'stretches' vectors by the factor of corresponding singular values v_i
- * S rotates the reference frame

Piotr Borycki

On the non-Unitarity of the Bogoliubov Transformation...

Singular Value Decomposition (SVD)

A singular value decomposition of an $(M \times N)$, $M \ge N$ matrix A is any factorization of the form

 $A = SVD^T,$

where $S (M \times M)$, $D (N \times N)$ are orthogonal matrices and $V (M \times N)$ is a diagonal matrix with matrix elements $v_i = V_{ii} \ge 0$.

SVD matrices

- * D^T rotates to the 'singular' reference frame
- * V 'stretches' vectors by the factor of corresponding singular values v_i
- * S rotates the reference frame

Piotr Borycki

On the non-Unitarity of the Bogoliubov Transformation...

* SVD of two sets of K orthogonal vectors, one proportional to each other (i.e. BCS), gives K 'singular' states corresponding to non-zero singular value.

* SVD of a set of 2K vectors, gives no more than $\min(2K, M)$ 'singular' states corresponding to non-zero singular value.

* SVD of A, B matrices is more general than the Bloch-Messiah decomposition.

Gives canonical basis with higher precision than the diagonalization of ρ .

* SVD of two sets of K orthogonal vectors, one proportional to each other (i.e. BCS), gives K 'singular' states corresponding to non-zero singular value.

* SVD of a set of 2K vectors, gives no more than $\min(2K, M)$ 'singular' states corresponding to non-zero singular value.

* SVD of A, B matrices is more general than the Bloch-Messiah decomposition.

Gives canonical basis with higher precision than the diagonalization of ρ .

* SVD of two sets of K orthogonal vectors, one proportional to each other (i.e. BCS), gives K 'singular' states corresponding to non-zero singular value.

* SVD of a set of 2K vectors, gives no more than $\min(2K, M)$ 'singular' states corresponding to non-zero singular value.

* SVD of A, B matrices is more general than the Bloch-Messiah decomposition.

Gives canonical basis with higher precision than the diagonalization of ρ .

* SVD of two sets of K orthogonal vectors, one proportional to each other (i.e. BCS), gives K 'singular' states corresponding to non-zero singular value.

* SVD of a set of 2K vectors, gives no more than $\min(2K, M)$ 'singular' states corresponding to non-zero singular value.

* SVD of A, B matrices is more general than the Bloch-Messiah decomposition.

Gives canonical basis with higher precision than the diagonalization of ρ .

Method

- step 0th generates input for step 1st
 parameters are easy to adjust
- the dimensionality of the problem may be reduced by the consistent use of the 'truncated' basis in step 1st
- self-consistent minimalization in a given truncated basis variational method
- 'singular' basis may not be selfconsistent with the final solution

Piotr Borycki

Method

- step 0th generates input for step 1st
 parameters are easy to adjust
- the dimensionality of the problem may be reduced by the consistent use of the 'truncated' basis in step 1st
- self-consistent minimalization in a given truncated basis variational method
- 'singular' basis may not be selfconsistent with the final solution

Piotr Borycki

Method

- step 0th generates input for step 1st
 parameters are easy to adjust
- the dimensionality of the problem may be reduced by the consistent use of the 'truncated' basis in step 1st
- self-consistent minimalization in a given truncated basis variational method
- 'singular' basis may not be selfconsistent with the final solution

Piotr Borycki

Singular Values of $[B^*A^*]$ - example

Piotr Borycki

On the non-Unitarity of the Bogoliubov Transformation...

On the non-Unitarity of the Bogoliubov Transformation...

Piotr Borycki

On the non-Unitarity of the Bogoliubov Transformation...

Regularization in Truncated Space

Regularization in Truncated Space

