On the non-Unitarity of the Bogoliubov

 Transformation due to the
Quasiparticle Space Truncation

P.J. Borycki

University of Tennessee / Warsaw University of Technology
Collaboration:
J. Dobaczewski - Warsaw, UT
W. Nazarewicz - UT, ORNL, Warsaw
M. Stoitsov - UT, ORNL, Sofia

Pairing (I)

The density dependent delta pairing interaction, usually used in the Skyrme-HFB calculations: \quad	$\chi=0$ volume pairing
$\chi=1 / 2$ mixed pairing	

$$
V_{p}\left(\vec{r}, \vec{r}^{\prime}\right)=V_{0}\left(1-\chi \frac{\rho(\vec{r})}{\rho(0)}\right) \delta\left(\vec{r}-\vec{r}^{\prime}\right)
$$

zero range in the coordinate space corresponds to infinite range in the momentum space

Pairing (I)

The density dependent delta pairing interaction, usually used in the Skyrme-HFB calculations: \quad| $\chi=0$ volume pairing |
| :--- |
| $\chi=1 / 2$ mixed pairing |

$$
V_{p}\left(\vec{r}, \vec{r}^{\prime}\right)=V_{0}\left(1-\chi \frac{\rho(\vec{r})}{\rho(0)}\right) \delta\left(\vec{r}-\vec{r}^{\prime}\right)
$$

zero range in the coordinate space corresponds to infinite range in the momentum space

PROBLEMS:

1. pairing renormalization scheme
2. unitarity of the Bogoliubov transformation

Skyrme density functional is a sum of two terms:

$$
\begin{aligned}
E[\rho, \kappa] & =E_{S k}[\rho]+E_{\text {pairing }}[\kappa] \\
\rho & =B^{*} B^{T} \\
\kappa & =B^{*} A^{T} .
\end{aligned}
$$

Unitarity of the Bogoliubov transformation guarantees that:
$\Rightarrow \rho$ is hermitian

> density matrix
$\Rightarrow \kappa$ is antisymmetric
pairing tensor

The energy cutoff procedure does not affect ρ significantly, since removed states correspond to very small singular values of B. However, since

$$
v_{A i}^{2}+v_{B i}^{2}=1
$$

repercussions of the cutoff for κ are more severe: the pairing tensor is no longer antisymmetric, but it develops a finite symmetric part. Usually one disregards this symmetric part in the HFB calculations.

Pairing Tensor

On the non-Unitarity of the Bogoliubov Transformation...

Antisymmetricity of the Pairing Tensor

However, the smallness of symmetric component of the pairing tensor may be deceiving:
\checkmark In EDF approach densities ρ and κ are independent dynamical variables.
\Rightarrow In HFB generalized density matrix \mathcal{R} must be projective.

$$
\mathcal{R}=\left(\begin{array}{cc}
\rho & \kappa \\
-\kappa^{*} & 1-\rho^{*}
\end{array}\right) \longleftarrow \begin{aligned}
& \text { Constrain within } \\
& \text { HFB theory }
\end{aligned}
$$

Antisymmetricity of the Pairing Tensor

However, the smallness of symmetric component of the pairing tensor may be deceiving:
\Rightarrow In EDF approach densities ρ and κ are independent dynamical variables.
\triangleright In HFB generalized density matrix \mathcal{R} must be projective.

$$
\mathcal{R}=\left(\begin{array}{cc}
\rho & \kappa \\
-\kappa^{*} & 1-\rho^{*}
\end{array}\right) \longleftarrow \begin{aligned}
& \text { Constrain within } \\
& \text { HFB theory }
\end{aligned}
$$

\Rightarrow Antisymmetricity of the pairing tensor is a result of fermionic commutation relations for particle and quasiparticle operators.
ponent indicates bosonic character of the corresponding many-particle state

Antisymmetricity of the Pairing Tensor

However, the smallness of symmetric component of the pairing tensor may be deceiving:
\checkmark In EDF approach densities ρ and κ are independent dynamical variables.
\mapsto In HFB generalized density matrix \mathcal{R} must be projective.

$$
\mathcal{R}=\left(\begin{array}{cc}
\rho & \kappa \\
-\kappa^{*} & 1-\rho^{*}
\end{array}\right) \longleftarrow
$$

constrain within HFB theory
symmetric com-
\Rightarrow Antisymmetricity of the pairing tensor is a result of fermionic commutation relations for particle and quasiparticle operators.

Therefore, symmetric component of the pairing tensor is not just a minor disturbance to be discarded.
ponent indicates bosonic character of the corresponding many-particle state

The Background of the Method

We propose a method of restoring the unitarity by introducing a truncated single-particle Hilbert space, in which the HFB equations are to be solved.

The Background of the Method

We propose a method of restoring the unitarity by introducing a truncated single-particle Hilbert space, in which the HFB equations are to be solved.

* We want to fi nd a new particle basis, in which the truncated $\left(B_{i}^{*}, A_{i}^{*}\right)$ HFB results are best reproduced.

The Background of the Method

We propose a method of restoring the unitarity by introducing a truncated single-particle Hilbert space, in which the HFB equations are to be solved.
We want to fi nd a new particle basis, in which the truncated (B_{i}^{}, A_{i}^{*}) HFB results are best reproduced.

* There are two sets of K vectors to be expanded in $\left(B^{*}, A^{*}\right)$.

Singular Value Decomposition (SVD)

```
A singular value decomposition of an
(M\timesN),M\geqN matrix A is any
factorization of the form
    A=SVD
where S(M\timesM),D(N\timesN) are
orthogonal matrices and V (M\timesN)
is a diagonal matrix with matrix elements
vi}=\mp@subsup{V}{ii}{}\geq0
```

SVD matrices
* D^{T} rotates to the 'singular' refer-
ence frame
* V 'stretches' vectors by the factor of
corresponding singular values v_{i}
* S rotates the reference frame

Singular Value Decomposition (SVD)

A singular value decomposition of an $(M \times N), M \geq N$ matrix A is any factorization of the form

$$
A=S V D^{T}
$$

where $S(M \times M), D(N \times N)$ are orthogonal matrices and $V(M \times N)$ is a diagonal matrix with matrix elements $v_{i}=V_{i i} \geq 0$.

SVD matrices

溒 D^{T} rotates to the 'singular' reference frame

* V 'stretches' vectors by the factor of corresponding singular values v_{i}
* S rotates the reference frame

Example:

$$
\begin{aligned}
& {\left[\begin{array}{cc}
1.24 & .85 \\
.14 & 1.25 \\
-.12 & -.07
\end{array}\right]^{4}=\left[\begin{array}{ccc}
.79 & .60 & .07 \\
.60 & -.79 & -.07 \\
-.07 & -.07 & .99
\end{array}\right]^{S}} \\
& \quad \times\left[\begin{array}{cc}
1.8 & 0 \\
0 & .8 \\
0 & 0
\end{array}\right]^{V}\left[\begin{array}{cc}
.6 & .8 \\
.8 & -.6
\end{array}\right]^{D^{T}}
\end{aligned}
$$

SVD for HFB matrices

SVD is a convenient method of orthogonalization of a set of vectors. In a M dimensional space:

米 SVD of two sets of K orthogonal vectors, one proportional to each other (i.e. BCS), gives K 'singular' states corresponding to non-zero singular value.

SVD for HFB matrices

SVD is a convenient method of orthogonalization of a set of vectors. In a Mdimensional space:

米 SVD of two sets of K orthogonal vectors, one proportional to each other (i.e. BCS), gives K 'singular' states corresponding to non-zero singular value.

* SVD of a set of $2 K$ vectors, gives no more than $\min (2 K, M)$ 'singular' states corresponding to non-zero singular value.

SVD for HFB matrices

SVD is a convenient method of orthogonalization of a set of vectors．In a M－ dimensional space：

米 SVD of two sets of K orthogonal vectors，one proportional to each other（i．e． BCS），gives K＇singular＇states corresponding to non－zero singular value．

米 SVD of a set of $2 K$ vectors，gives no more than $\min (2 K, M)$＇singular＇states corresponding to non－zero singular value．

米 SVD of A, B matrices is more general than the Bloch－Messiah decomposition．

SVD for HFB matrices

SVD is a convenient method of orthogonalization of a set of vectors. In a Mdimensional space:

米 SVD of two sets of K orthogonal vectors, one proportional to each other (i.e. BCS), gives K 'singular' states corresponding to non-zero singular value.

* SVD of a set of $2 K$ vectors, gives no more than $\min (2 K, M)$ 'singular' states corresponding to non-zero singular value.

米 SVD of A, B matrices is more general than the Bloch-Messiah decomposition.

* Gives canonical basis with higher precision than the diagonalization of ρ.

Method

Method

Method

$+\operatorname{step} 0^{t h}$ generates input for step $1^{\text {st }}$

- parameters are easy to adjust
+ the dimensionality of the problem may be reduced by the consistent use of the 'truncated' basis in step $1^{s t}$
+ self-consistent minimalization in a given truncated basis - variational method
- 'singular' basis may not be selfconsistent with the final solution

Singular Values of $\left[B^{*} A^{*}\right]$ - example

Singular values of $\left[B^{*} A^{*}\right]$ in $1 / 2^{+}$block for neutrons in ${ }^{170} \mathrm{Sn}$.

Particle Space Truncation - Results (I)

Particle Space Truncation - Results (II)

Regularization in Truncated Space

Regularization in Truncated Space

